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[1] Dispersion experiments are compared for two model fractures with identical
complementary rough walls but with a relative shear displacement d parallel (d k U) or
perpendicular (d ? U) to the flow velocity U. The flowing fluid is a shear thinning
polymer solution with a Newtonian behavior at low shear rates. For d ? U, the mixing
fronts display large structures well reproduced by assuming parallel channels of
conductance deduced from the aperture field. This model also explains the amplification
of the structures in the shear thinning regime and the distribution of the local transit
times t(x, y). For d k U, the front is much flatter. The local thickness of the front is
characterized by a dispersivity a(x, y): its distribution is narrow enough to define an
effective value a(Pe) only for d k U, and, in this case, a(Pe) has a Taylor-Aris-like
variation with Pe.
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[2] Channelization is a key characteristic of flow and
transport in fractured rocks [Committee on Fracture Char-
acterization and Fluid Flow, 1996] and results frequently
from the occurence of relative shear displacements of the
two fracture surfaces during fracturation [Olsson and
Brown, 1993; Gentier et al., 1997]. Such displacements
(named d thereafter) have been shown both experimentally
and numerically [Matsuki et al., 2006; Auradou et al., 2006,
2008] to create channels and ridges perpendicular to d.
Their length depends on the multiscale geometry of the
walls and, even for amplitudes d smaller than 1% of the
fracture length Lx, they represent a significant fraction of Lx
[Matsuki et al., 2006]. The permeability is then anisotropic:
both its value and the correlation length of the velocity field
are higher for a mean flow parallel to these channels (i.e.,
perpendicular to d).
[3] The objective of the present communication is to

demonstrate experimentally that this type of channelization
induces a strong anisotropy of the magnitude and properties
of tracer dispersion. A previous work [Boschan et al., 2007]
studied dispersion in a single self-affine model fracture,
using several shear thinning fluids to investigate the specific
influence of the rheology on the mixing front geometry and
local/global dispersion properties. In this work, we use
always the same fluid but we compare dispersion measure-
ments in two different fracture models: both are made of the
same pair of complementary surfaces but with a relative
shear displacement respectively perpendicular and parallel
to the mean flow velocity leading to different orientations of

the channels. Our work is then focused on the dependence
of dispersion on the relative orientation of the channels and
the mean fluid velocity U. The flowing fluid is a polymer
solution with a high constant viscosity at low shear rates
(Newtonian plateau) which stabilizes the flow with respect
to buoyancy driven instabilities at low velocities [Tenchine
and Gouze, 2005]. At high shear rates the fluid has shear
thinning rheological characteristics: this will be shown to
enhance the velocity contrasts in the flow field and make the
observation of the anisotropy easier. Moreover, dispersion
in shear thinning fluids is relevant to water management
processes using concentrated colloidal suspensions, emul-
sions and liquid foams.
[4] Many experiments on solute spreading in fractures

have been reported: Keller et al. [1999] and Lee et al.
[2003] observed dispersion coefficients D increasing
linearly with the velocity U (i.e., the dispersivity a = D/U
is constant). Neretnieks et al. [1982] have also demonstrated
that the variation of the breakthrough curve is not
continuous but displays steps indicating that preferential
channels were present in the fracture: information on the
development of the mixing zone with the distance will help
identify such flow channelization effects and their influence
on tracer dispersion. Measurements by Park et al. [1997]
used radioactive tracers, still with a resolution too low to
investigate local spreading. In all these papers, the
anisotropy of dispersion is not investigated and (except
for work by Lee et al. [2003]), little information is available
on the relative position of the fracture walls.
[5] We use transparent model fractures allowing for

optical concentration measurements [Boschan et al., 2007].
Fluid flow takes place between two self-affine rectangular
rough walls mounted vertically and of same characteristic
exponent H = 0.8 as in many fractured rocks [Poon et al.,
1992]. The mean flow velocity U is parallel to the length
Lx = 350 mm of the walls (their width is Ly = 90 mm).
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[6] The surfaces bounding the fracture gap are exactly
complementary. The aperture field used in the experiments
is obtained by first introducing a normal displacement
between them (the mean aperture is equal to its magnitude)
and, then, a lateral shear displacement d parallel or perpen-
dicular to U (i.e., to x). Because of this shear, the local
aperture a(x, y) varies spatially since matching features of
the two walls do not correspond to same (x, y) values any
more. As mentioned above, this leads to the appearance of
channels respectively perpendicular and parallel to U. Both
d and the mean aperture a are equal to 0.75 mm and the
standard deviation of the aperture is sa = 0.144 mm. The
flow field is therefore more channelized than in the model
of Boschan et al. [2007] in which sa = 0.11 mm (for d =
0.33 mm). The statistical properties of the aperture fields of
similar fractures are discussed in detail by Auradou et al.
[2006, 2008].
[7] The fluid is a shear thinning 1000 ppm solution of

scleroglucan in water and its rheological properties are
discussed by Boschan et al. [2007]. At low shear rates ( _g �
_g0 = 0.026 s�1), the viscosity is constant with a high value
(m = m0 � 4500 mPa s). For a viscous Newtonian flow
between parallel plates at a distance a, the mean velocity
for which the shear rate at the walls is equal to _g0 isU0 = a _g0/
6 = 3 � 10�3 mm s�1. For _g � _g0, the viscosity decreases
as m / _gn�1 with n = 0.26. The displacement process is
visualized by adding 0.2 g L�1 of blue dye to the displacing
solution. The densities are matched by adding NaCl to the
displaced solution saturating initially the model; measure-
ments in the reverse configuration were also performed to
check that no buoyancy effects are present.

[8] The flow velocity U is kept constant during each
experiment with: 0.0024 � U � 0.24 mm s�1 and the
transport of dye is characterized by the dimensionless Péclet
number Pe = Ua/Dm, where Dm = 6.5 10�10 mm s�1 is the
molecular diffusion coefficient of the tracer. Dye concen-
tration maps are obtained from light absorption measure-
ments [see Boschan et al., 2007]: the high resolution of
these maps (typically 0.2 mm per pixel) allows one to
analyze simultaneously the dispersion process at the local
and global scales.
[9] Figure 1 shows maps obtained in the two model

fractures at two different velocities U. If d ? U, two fingers
soar upward with a large trough in between (Figures 1b and
1d): they correspond to faster paths parallel to U (Figure 1b)
and their amplitude increases with U. For d k U, the front is
smoother (Figures 1a and 1c) while its mean slope and the
size of the indentations still increase with the velocity.
[10] The large structures in Figures 1b and 1d reflect

velocity contrasts between channels created by the shear.
They are well reproduced by modeling the fracture aperture
field as a set of independent parallel channels of aperture
a(y) = ha(x, y)ix. A particle starting at a transverse distance y
at the inlet should move at a velocity proportional to
a(y)(n+1)/n where n = 0.26 for U > U0 and n = 1 for U < U0.
The profile xf(y, t) of the front at a time t is then

xf y; tð Þ ¼ x tð Þ a yð Þ nþ1ð Þ=n

ha yð Þ nþ1ð Þ=niy
; ð1Þ

where x(t) = hxf (y, t)iy and ha(y)(n+1)/niy are averages
calculated over y [see Auradou et al., 2006, equation (7);

Figure 1. Gray level maps of the relative concentration c of the displaced fluid in the two transparent
models (white, c = 1; black, c = 0; dashed lines, theoretical front profiles calculated from equation (1); d is
the relative shear displacement between the walls): (a and c) d kU and (b and d) d?U. Mean velocities are
U = 0.0125 mm s�1 (Pe = 14) in Figures 1a and 1b and U = 0.25 mm s�1 (Pe = 285) in Figures 1c and 1d.
The maps correspond to the time when the injected volume of displacing fluid is half the void space. The
vertical and horizontal axes show the distance from the left and inlet sides of the model, respectively.
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Auradou et al., 2008, equations (5)–(8)]. The profiles
computed using equation (1) and the actual aperture fields
appear in Figures 1a–1d as dashed lines; from the above
discussion, one assumed that n = 1 at the lowest velocity
(Figures 1a and 1b) and n = 0.26 at the highest one (Figures 1c
and 1d). Equation (1) predicts well the location and shape
of the ‘‘fingers’’ and ‘‘troughs’’ at both velocities for d ? U
although their amplitude is slightly underestimated in
Figure 1b. In this latter case, one has U � U0, corresponding
to a transition regime between the power law and Newtonian
rheologies.
[11] For d k U, the features of the front are also visible at

the same transverse distances y in Figures 1a and 1c: they
reflect again a convective spreading of the front due to
velocity contrasts between the flow paths. However, in
contrast with the previous case d ? U, these features (except
for the small global slope of the front) are not reproduced by
the theoretical model (dashed line): this was to be expected
since its underlying hypothesis are not satisfied for d k U.
[12] The time variations of the local concentration c(x, y, t)

on individual pixels provide additional, more quantitative,
information on the convective and diffusive processes
involved. Practically, the variation of the normalized
concentration c(x, y, t) with time is well fitted by the
function

c tð Þ ¼ 1

2
1þ erf

t � tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt=U2

p
 !

: ð2Þ

Mathematically this function is the classical solution of the
convection-diffusion equation in an homogeneous medium
following a step-like initial variation of the concentration,
uniform in the direction transverse to the flow. In the present
medium which is heterogeneous, t and D are only used to
characterize the transit time of the front from the inlet to an
individual pixel (x,y) and its local width as it reaches this
pixel. For each experiment the coefficients t(x, y) and D(x, y)
are determined for all points (x, y) inside the field of view.
The displacement front includes at a time t the set of points
for which t(x, y) = t [Boschan et al., 2007]. The coefficient
D(x, y) is determined from the centered second moment
dt2(x, y) of the transit times at the point (x, y) and provides
information on the local thickness of the front as it reaches
this point. In the following, a(x, y) = D(x, y)/U will be
called: ‘‘local dispersivity.’’
[13] Figure 2 compares the experimental and theoretical

probability distributions of the normalized times t(x, y) U/x
for the same experiments as Figure 1. The above model
predicts that the normalized time is related to the aperture of
the channels by: t(x, y) U/x = xf (y, t)/x(t), in which the ratio
xf (y, t)/x(t) is given by equation (1). The distribution is then
obtained from the histogram of the results for all y values.
[14] As expected, these distributions are much broader for

d ? U (Figures 2b–2d) than for d k U (Figures 2a–2c). For
Pe = 285, the experimental distribution for flow parallel to
the channels coincides very well with the theoretical one
and displays two peaks reflecting the structuration of the
flow. At Pe = 14, the width and global shape of the
experimental and theoretical distributions are overall similar

Figure 2. Histograms of the experimental normalized local transit time t(x, y)U/x (solid lines) for the
same models and Pe values as in Figure 1. The distribution of t(x, y)U/x has been computed in the upper
fifth of the length of the model to make meaningful comparisons with the distribution of the theoretical
transit times (solid triangles and dashed lines) determined from equation (1).
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and narrower than for Pe = 285 because of the lower-velocity
contrast in the Newtonian limit. For d k U (Figures 2a–2c),
the distribution at both Péclet numbers is much narrower than
for d ? U. The mean peak corresponds to t(x, y)U/x ’ 1; its
width increases with Pe (again likely due to an increase of the
velocity contrasts) and is similar to that of the theoretical
distributions. Still for d k U, the experimental distribution
displays additional ‘‘aisles’’: these reflect likely complex paths
deviating from straight trajectories parallel to U.
[15] From the above results, the overall geometry of the

mixing front seems to be determined mainly by convective
effects; we examine now the relative influence of convec-
tion and diffusion on the local width of the front through
the variation of a(x, y) with Pe. Figures 3a and 3b display,
for each value of x (horizontal scale), the histogram (coded
in grey levels) of the corresponding values of a(x, y)/a
(vertical scale).
[16] For d k U, the probability distribution of a(x, y)/a is

narrow, particularly at high flow velocities (Figures 3a and
3c). Moreover, its mean value a(Pe)/a varies little with the
distance x and becomes constant for x � 100 mm (see inset
of Figure 4). The increase with time of the local front
thickness is therefore diffusive and the corresponding
normalized dispersivity will be taken equal to a(Pe)/a.
[17] The variation of a(Pe) with Pe for d k U displayed in

Figure 4 provides quantitative information on the mechan-
isms governing the increase of the local front thickness with
distance: the values are compared to theoretical predictions
(dashed and solid lines) including both the effects of Taylor
dispersion [Taylor, 1953] and molecular diffusion and
assuming respectively n = 1 [Aris, 1956] and n = 0.26.

Overall the experimental values are similar (although slightly
higher) to the predictions for n = 0.26 with a dominant
Taylor dispersion component at high Pe values (a(Pe)/a /
Pe). At low Pe values, the values obtained for n = 1 (dashed
line) and for n = 0.26 are similar and the dispersivity is
increasingly influenced by a molecular diffusion component
(a(Pe)/a’ 1/Pe). A similar contribution of Taylor dispersion
at high Pe values has already been demonstrated in models
with a randomly distributed aperture of short correlation
length [Detwiler et al., 2000]; however, at low Pe values,
these authors did not observe a transition toward molecular
diffusion (a / (1/Pe)) but a geometrical dispersion regime
characterized by a = cst(Pe)) and reflecting spatial fluctua-
tions of the velocity due to those of the aperture.
[18] For d ? U (Figures 3b and 3d), the distribution of the

values of a/a is much broader with a ‘‘tail’’ at large values
of a/a and two peaks at high velocities (solid curve in
Figure 3): in contrast to the case d k U, no single value of
a/a characterizes well the whole distribution. The value
corresponding to the first peak seems to reach a limit at
long distances x: it corresponds likely to fluid paths for
which Taylor-Aris dispersion is dominant compared to the
influence of transverse velocity gradients, at least at high
Pe values. The corresponding values of a/a are plotted in
Figure 4 (solid squares): they are close to those
corresponding to Taylor dispersion (and to the other
model) at high Pe values but higher at low Pe values.
[19] Comparing the dispersion characteristics discussed

above demonstrates their very strong dependence at both the
global and local scales on the orientation of the mean flow
with respect to the channels created by the shear. At the
global scale, the front displays large-scale fingers and
troughs for d ? U (i.e., U parallel to the channelization);

Figure 3. (a and b) Histograms (gray levels) of the values
of the normalized local dispersivity a(x, y)/a (vertical scale)
as a function of the distance x (horizontal scale). White,
maximum probability; black, zero probability. (c and d)
Histograms obtained at x = 240 mm for Pe = 285 (solid line)
and Pe = 14 (dashed line).

Figure 4. Variation of the normalized local dispersivity a/a
as a function of Pe (solid triangles, mean value of a/a for
d k U; solid squares, value corresponding to the first peak
in the distribution of a/a for d ? U; solid and dashed lines,
Taylor-Aris dispersivity between parallel plates for a power
law fluid of exponent n = 0.26 and for a Newtonian fluid
with n = 1, respectively). Inset shows the variation of
the mean value ha(x, y)iy as a function of the distance x
for d k U: Pe = 285 (open diamonds), Pe = 142 (open
triangles), Pe = 28.5 (open squares), and Pe = 14 (open
circles).
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these features are well reproduced by a channel model using
a transverse effective permeability profile derived from
the aperture field. Moreover, the increase of the size of the
fingers between low and high Pe values is well predicted
from the variations of the fluid rheology with Pe (shear
thinning at high Pe values and Newtonian at low ones). For
d k U (i.e., U perpendicular to the channelization), the front
is much flatter, suggesting a more effective sampling of the
velocity heterogeneities by solute particles. The remaining
distortions of the front cannot be predicted by the channel
model: however, they are observed at the same transverse
locations at all velocities and remain of similar amplitudes
(taking into account the variations of the rheology). This sug-
gests that these features are of convective origin in all cases.
[20] While these data agree with the numerical study of

Auradou et al. [2006] and, for d ? U, with the experiments
of Auradou et al. [2008], the present work expands the
range of validity of these previous results to more
heterogeneous media and large-scale distortions of the
front. Further information related to the front propagation
has also been obtained from the distribution of the local
normalized transit times t(x, y)U/x. These distributions are
much broader for d ? U than for d k U and their width is
larger in the shear thinning regime: like the front geometry,
they are well predicted from the channel model but only
if d ? U.
[21] From the practical point of view, these results dem-

onstrate the interest of analyzing the transit time distribu-
tions at different distances x along the flow instead of
performing only a measurement at the outlet. In the case
d ? U, for instance, the mean square width dt2 of the transit
time distribution scales as 1/U2 (see Figures 2b–2d); the
same velocity scaling would be found for pure geometrical
dispersion. In contrast, the dependence of dt2 on the
distance x from the inlet is different: / x2 in the first case
and / x in the second. Measurements at different x values
allow one therefore to identify unambiguously the spread-
ing process (although channeling effects may already be
suggested by steps in the concentration variation curves
[Neretnieks et al., 1982]).
[22] Analyzing now the increase of the local front thick-

ness with distance, a strong dependence of the distribution
of the values of a(x, y) on the orientation of d is also
observed. For d ? U the distribution is much broader than
for d k U (and also than for the model of Boschan et al.
[2007] with d ? U and a smaller relative shear displacement
d): no single dispersivity can be defined and even the lowest
local values of a(x, y) (corresponding to simple flow paths)
are larger, except at high Pe values, than those of Boschan
et al. [2007] which reflected Taylor-Aris dispersion. This is
likely due to the enhancement of dispersion by the exchange
of tracer (due to transverse molecular diffusion) between
adjacent flow paths of different velocities. For d k U, the
variation of the local front thickness is diffusive and may be
characterized by the mean value a(Pe) of the distribution:
the variation of a(Pe) with Pe is mostly due to Taylor-Aris
dispersion as in the work by Boschan et al. [2007]. Finally,
like in this latter work, and unlike for rough fractures with a
small correlation length of the aperture [Detwiler et al., 2000],
no geometrical regime characterized by a diffusive local front
spreading and a dispersivity a = cst(Pe) is observed in either
model.

[23] This set of results may be transposed to the interpre-
tation of field observations [see, e.g., Becker and Shapiro,
2000] within the limitations associated to the restricted length
of the samples used and the fact that the relatively small
standard deviations considered in this study may not allow to
reproduce fully the effects of mass transfer between rapid and
slow channels in a broader distribution of conductivities. For
much longer fractures, transverse diffusion might be large
enough for solute particles to sample the whole distribution of
local velocities and reach such a global diffusive spreading
regime. Also, for higher standard deviations of the aperture,
more complex models of dispersion should be considered
[Bouchaud et al., 1987; Dentz et al., 2008]. Because of the
specific correlations of the flow velocity field for self-affine
wall geometries [Auradou et al., 2006], the corresponding
exponent would then likely depend on the characteristic
roughness exponent of the fracture walls.
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