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Abstract  Upscaling procedures and determination of effective properties are of major
importance for the description of flow in heterogeneous porous media. In this context, we
study the statistical properties of effective hydraulic conductivity (Kegr) distributions and
their dependence on the coarsening scale. First, we focus on lognormal stationary isotro-
pic media. Our results suggest that K is lognormally distributed independently on the
coarsening scale. The scale dependence of the mean and variance of Kegr are in agreement
with recent analytical derivations obtained using coarse graining filtering techniques. In the
second part, we focus on binary media, analysing the dependence of K¢ distributions on
the coarsening scale and also on the high-K facies volume fraction p. When p is near the
percolation threshold p., the decrease of the normalized variance with the coarsening scale
is remarkably (10% times) slower compared to the situation in which p far from pc, but also
compared to the cases of lognormal media studied before. This result permits to assess the
degree of difficulty that systems with p near p. pose for upscaling procedures. Also we point
out in terms of Kegr statistics the relative influence of the coarsening scale and of the high-K
facies connectivity.

Keywords Heterogeneity - Upscaling - Random media - Effective conductivity -
Single phase flow

1 Introduction
1.1 Upscaling

Typical geological description of the subsurface heterogeneity involves spatial scales rang-
ing from microns (typical pore size, attainable using thin sections observations, or NMR
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techniques) to several kilometres (typical reservoir scale, attainable with 3D seismics, out-
crops and geological analysis). Basic laboratory measurements are usually performed at the
centimetre scale corresponding to the plug size. Geological data can be determined at the
scale of m in the direction of the wells or boreholes, using well logging tools.

In most cases, simulating flow and transport models at the finest resolution scale remains
computationally expensive. Even if fine grid simulations could be performed for several res-
ervoir realizations, practical applications such as history matching, uncertainty modelling
and sensitivity analysis would still remain unfeasible at this scale. Upscaling procedures and
techniques are then of interest to transfer data from the fine geological grid to the coarse
simulation one. The issue of upscaling in heterogeneous media was initially addressed a
few decades ago by Landau and Lifshitz (1960) in the context of electrodynamics and by
Matheron (1967) in the context of porous media. Analytical methods like bounds-based
approaches (Renard and de Marsily 1997) or power averaging (Journel et al. 1986; Desbarats
1992) were initially proposed, before using numerical techniques related to homogenization
theory (Renard and de Marsily 1997). The problem of upscaling and derivation of effective
properties has been treated extensively in the literature of various areas of research, and sev-
eral reviews address the subject thoroughly (Renard and de Marsily 1997; Wen and Gomez
Hernandez 1996; Neuman and Di Federico 2003; Sanchez-Vila et al. 2006).

In order to fix the ideas, we introduce first the length scales of the problem. Four charac-
teristic lengths are involved: the size Ax of the fine grid cell, related to the geological model,
an integral scale [y (“geological” correlation length) of the heterogeneity if possible to define;
the size A of the coarse grid cell chosen; and the overall size L of the full domain under study.
In the case of a binary medium close to the percolation threshold, the information provided
by lp might be advantageously replaced by that of the so-called “percolation” correlation
length x, which gives a measure of the size of finite clusters (Stauffer and Aharony 1992).
In practical terms, the physically meaningful fine grid characteristic length scale comes up
from a comparison between /[y and Ax. The ratio of A to /o (when it is possible to define the
latter) or to Ax, in all other cases, it is frequently referred to as the “coarsening scale”.

In terms of these characteristic scales, upscaling is the set of methods that allows one
to transform accordingly properties given at a fine scale Ax into the corresponding ones at
a coarse scale A. In particular, the determination of a coarse scale hydraulic conductivity
(Kefr) value is of special interest in various areas of research (Kef may also be referred to as
an effective or equivalent hydraulic conductivity, see Sanchez-Vila et al. (2006) for related
nomenclature). The practical goal of upscaling is to achieve a coarse scale description in
which the phenomenon under study (i.e. flow, transport) approximates as much as possible to
that resulting of a fine scale description, while computational costs are expected to be greatly
reduced. The task of accounting for important heterogeneity features such as connectivity
while reducing spatial accuracy is crucial, especially in badly connected fracture patterns,
or extremely heterogeneous media. One key concept related to this issue is the representa-
tive elementary volume (REV). Although the definition of the REV is often not formal and
remains subjective, one could argue that if the REV linear size is smaller than A, heterogeneity
is smoothed out and upscaling does not present difficulties. If the REV size is greater than
A, heterogeneity fluctuations may compromise the ability to reproduce large-scale features.
Regarding the REV and some cases of heterogeneity addressed in this article, Paleologos
et al. (1996), considered that, for bounded heterogeneous media having lognormal K distri-
bution and in the case of permeameter boundary conditions, the REV linear size should be at
least eight times [y, while, in the framework of the percolation theory, the REV size equals x
(which tends to infinity if the system is at the percolation threshold (Hunt and Ewing 2009)).
Following this author, the composite correlation length of 3D media would be a product
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Table 1 Length scales involved

in upscaling and their description Length scale Description
Ax Fine grid cell size (geological model scale)
ly Integral scale or “geological” correlation length?
A Coarse grid cell size (flow simulation scale)

E Eﬂﬁ(t)laongdog Svtiil. 83(9)8; X Percolation correlation length®

¢ Dykaar and Kitini dis (1992) L Size of the full domain in study

d Attinger (2003) A Ax; Ay Coarsening scale®d

of a geological and percolation factors; this argument might also be pertinent for the REV
(Table 1).

1.2 Objectives

While previous studies have addressed mainly the dependence of Kcf values with the coars-
ening scale (or at most its mean and variance), in the present study our aim is to study the
scale dependence of the entire K.f probability density functions (pdfs) and the statistics
thereupon. The underlying idea is that if we are able to determine the pdf of K at the scale
A knowing both its pdf and correlation structure at the scale Ax, then the upscaling problem
could be considered as being essentially solved (Neetinger et al. 2005). This philosophy is
very close to renormalisation group approaches developed lately (Attinger 2003).
Considering the scale dependance of the K distributions rather than comparing a specific
Kcfr value obtained using one particular upscaling method in one particular media sample
can be an advantageous approach, because two different upscaling techniques yielding the
same distributions can be considered equivalent (in the sense of equivalent classes), even if
for a particular media sample these techniques can provide different numerical values. As
an example of this idea, and in the specific case of 2D isotropic lognormal distributions, the
computation of K for a media sample by using a finely gridded numerical simulation or by

computing the geometric average of the actual K field (i.e. Keir = [Hfj’l’ K i] 1/N) will yield
the same distribution, even if numerical values may differ from one realization to another
(Romeu and Neetinger 1995).

In order to explore the potential of these ideas, we choose to follow a “numerical exper-
imental approach”. We consider two classical models for heterogeneous media: lognormal
and binary media.

Lognormal fields have been extensively addressed in the literature since they were found to
provide a good degree of approximation to field measurements of K (Hoeksema and Kitanidis
1985; Sudicky 1986). The K distribution within a single facies is frequently modelled as log-
normally distributed by geostatisticians.

Binary or bimodal representations, as opposed to unimodal lognormal, came up as natural
simplified models for media with two types of facies (or composites) or two characteristic
values of K (sand-clay, sandstone-shale and fractured stone vs. non-fractured stone), being in
this case the spatial organisation of the high-K facies frequently the key factor for determining
effective properties. Interesting percolation effects can be expected in that situation in the case
of different facies with high K contrasts. Combined models in which each facies possesses its
own lognormal distributions have also been subject of study. In the context of the upscaling of
naturally fractured reservoirs, de Dreuzy et al. (2001a, b p. 1, 2) considered random networks
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of fractures having random apertures. In this case, spatial connectivity disorder is coupled
with local (aperture) randomness. The obtained results provide an alternative interpretation
framework.

In view of the strong dependence of K¢ff on connectivity and thus on dimensionality
(evident, for example, in the dimensionality dependence of the percolation thresholds and
exponents) we chose to focus our work on 3D media despite the increase of computational
cost involved and derived restrictions over the possible sizes of the samples to be studied.

The organisation of the article is as follows: we review existing results of upscaling of
lognormal fields, before introducing upscaling of binary media, in which percolation the-
ory and effective medium approaches are relevant. The retained numerical methodology is
described: generation of the random media and numerical calculation of K. The results
for lognormal media are then presented and discussed, and compared with existing theo-
ries, with a partial conclusion where we discuss the conceptual implicances of our results.
Binary media results are then framed in existing theoretical approaches and presented with
focus on K¢ distributions and their statistics. We then present a final discussion and set the
perspectives for future work.

1.3 Upscaling of Lognormal Fields

There is a vast amount of literature addressing the issue of upscaling lognormal media, the
main reviews were mentioned in previous sections because lognormal media has been the
test benchmark for upscaling by excellence. The theoretical approaches have a cornerstone
on Matheron’s work (Matheron 1967) that yielded exact results for lognormal isotropic sta-
tionary fields in 1D and 2D. An approximate expression is proposed in 3D that can be written
as (Gutjahr et al. 1978):

1 1
Kefr = Kg [1 + (5 - 5) UliK] (1.2.1)

where D is the euclidean dimension, K the geometric mean and 002 = U]%. K

Matheron conjetured that this result was actually the sum of the first two terms in the
expansion of an exponential form:

o1
Ker = Kgexp [(5 — 5) alflK] (1.2.2)

The exponential conjecture is equivalent to the power average (Desbarats 1992):
1/w

1 1 1
Ker=|— | K% ; =|{--— 1.2.
off V/ dv ;ow (2 D) (1.2.3)

14

Dagan (1993) demonstrated the validity of the conjecture using a series expansion up
to the fourth order in the variance, but later De Wit (1995) and Abramovich and Indelman
(1995) used sixth order perturbation methods to show that both Egs. 1.2.2 and 1.2.3 are not
strictly valid for D = 3, and that in the general case, the correct expression would need to
include a small correction. This correction was shown to be structure dependent, it depends
on the n-point statistics beyond the variance. This implies that any upscaling formula of the
type of Eq. 1.2.3 is a priori incorrect. Nevertheless, power averaging is however widely used
as a good approximation to K (de Dreuzy et al. 2010).

Neetinger (1994, 2000) argued by using renormalization methods that both expressions
are valid for media with negligible correlation length, even if giving the latter a precise
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mathematical sense remains a theoretical challenge. Stepanyants and Teodorovich (2003)
found similar results using analogous methods. Paleologos et al. (1996) studied the case of a
bounded domain having a lognormally distributed K, in the case of permeameter boundary
conditions, and derived an explicit expression for K¢f that includes a domain integral which
is a function of the integral scale. Note that every renormalization method is based upon
some closure assumption that may be criticized in light of the known exact series expansion
results presented above.

Lately, Attinger (2003) and Eberhard et al. (2004) used a coarse graining filtering technique
combined with perturbation theory and renormalization group analysis to derive expressions
for Kefr and its variance as a function of the coarsening scale.

Numerical simulations have also been extensively used to study upscaling of lognormal
fields. Ababou et al. (1989) studied flow fields, head contours and Kegr in a single realization
of a 3D lognormal random field.

Dykaar and Kitanidis (1992) employed a spectral decomposition approach in a bounded
domain to obtain the values of K¢ and its variance as a function of the coarsening scale and
compared these to different methods. Their results supported Matheron’s conjecture.

Fenton and Griffiths (1993) used a MonteCarlo approach to study block conductivity in a
2D domain and found that its distribution was approximately lognormal.

1.4 Upscaling in Binary Media: Effective Medium Approaches, Connectivity
and Percolation

Binary media has been studied often in the light of perturbation methods and effective medium
theories (Maxwell 1873; Dagan 1989; Pozdniakov and Tsang 2004). Most of these methods
are approximations that neglect detailed information about the spatial organisation of the
facies or composite distribution (for example, connectivity). For example, Maxwell (1873)
showed that for 3D spherical inclusions of a material 1 embedded in a material 2, Kefr is
approximated by means of Eq. 1.3.1.

Keir — Ko Ki — Ky
St T 22, | 22 (1.3.1)
Kett +2K> K1 +2K;

This expression is valid for a dilute regime (low volume fraction p; of composite 1). Later,
Hashin and Shtrikman (1962) proved by means of variational principles that this expression
equals the lower bound for K¢ if no other information than p; is provided, the upper may
be obtained by interchanging labels 1 and 2 in Eq. (1.3.1). Later Dagan (1989) proposed a
self consistent approximation valid also for lognormal distributions. In the following, p will
refer to the volume fraction of the composite with higher K.

Connectivity has indeed been shown to be a very important feature in order to achieve
accurate upscaled flow and transport properties, eventhough there is not a unified view of its
quantitative characterization. Zinn and Harvey (2003) argued that “the full univariate distri-
bution of conductivity values and the spatial covariance function for these values may not
provide sufficient information to estimate effective flow and transport parameters®. Other
authors such as Knudby and Carrera (2005) agreed with this point of view, reviewing a set of
statistical indicators of flow and transport connectivity suitable for different scenarios. As an
example of the importance of connectivity characterization beyond two-point statistics, they
use an example from Western et al. (2001) where two conductivity fields with practically
same histogram and omnidirectional variograms (spatial covariance function) are evidently
very different regarding connectivity which would imply strongly different effective proper-
ties. Knudby et al. (2006) showed that binary media with the same number, size and shape

@ Springer



A. Boschan, B. Neetinger

of inclusions may not have the same effective properties due to the strong influence of the
spatial organisation of the inclusions.

Percolation theory is intimately related to the issue of connectivity. Berkowitz and Balberg
(1993) examined its applications to flow in porous media and also studied a system of per-
meable spheres with different K distributions studying its percolation exponents. Recently,
Hunt and Ewing (2009) presented a comprehensive work regarding percolation theory and
porous media.

The overall conductivity K of a system near the percolation threshold scales as:

K o (p — po)* (1.3.2)

where p. is the critical value of p for which percolation transition occurs. Reported values for
w range from 1.88 to 2.09 (Hunt and Ewing 2009), however the coefficient of proportionality
is not provided by percolation theory

The main differences between formal percolation systems and the situations motivating
flow and transport simulations in realistic subsurface models may be summarize as following:

— The size of the sample is finite (this issue is addressed by finite size scaling within perco-
lation theory, though the knowledge of universal non-singular functions is required for
prediction) and may be statistically affected by unknown spatial correlations (Hunt and
Ewing 2009). Spatial correlations are also known to change the percolation thresholds
(Harter 2005; Guin and Ritzi Jr. 2008).

— The low-conducting K values are different from zero, and then there is an influence of
the specific Knigh and Kjow values (this is for binary media, the situation for multiple
facies media being still more complex).

— Percolation scaling applies mainly near the percolation threshold, and sometimes it’s
difficult to establish how far the system is from it (Berkowitz and Balberg 1993).

All these features tend to smear out the percolation transition, affecting the effective
properties in a way that may be nontrivial to determine.

Moreover, connectivity and percolation properties in upscaling have been studied in mod-
els much more complex than binary media. For example, Fleckenstein and Fogg (2008)
studied the relation between connectivity of high-K facies and average conductivity on five
realizations of 3D geostatistical transition-probability based model, and showed how the
connectivity of high K channels at different scales may influence the upscaling process. We
consider however that the issue of upscaling and derivation of effective hydraulic conductivity
Kefr in binary and lognormal media is far from being closed and still of huge interest.

2 Numerical Methodology
2.1 Description of the Upscaling Technique

Two main trends are followed regarding the implementation of numerical simulations for
upscaling: local or global methods (for a more detailed and complete description we refer
to Chen et al. (2003) and references therein). In local methods, a target block (coarse grid
cell) is defined, and the fine grid K values of this block (plus a priori boundary conditions)
are used to calculate Kegr. In the global ones (Bauer et al. 2008), basically flow is solved
once over the entire domain and the region over which K is calculated is then chosen.
Kefr is then computed using a suitable post treatment of the flow field (pressure and local
flow rate). This last method gives K.f values that are expected to be less dependent on the
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Table 2 Simulation parameters name, definitions and values for Sects. 3.1 and 3.2 (lognormal media)

Definition Name Section 3.1 Section 3.2
Fine grid mean of In(K) (In(K)) 0 0

Fine grid variance of In(K) ag 1 0.5;1;2
Integral scale Iy 3Ax Ax

Coarsening scale an 2" /3 (n=12;3:4;5,6) 2" (n=1;2;3:4)
Refinement degree r 1 5

Realizations per parameter set n 5,000 5,000

particular upscaling conditions (for example, the choice of boundary conditions) used, but
the computational cost is greater because it requires solving relatively larger linear systems.

In present study, we chose to employ a local upscaling technique with standard (perme-
ameter) boundary conditions. More details about the technique are given in Sect. 2.3. Each
coarse grid cell is an isotropic stationary realization of a lognormal or a binary random field,
and is constituted by N fine grid cells forming a simple cubic lattice. The fine grid cells have
fixed linear size Ax. Over each coarse grid cell (of linear size A = N Ax) K is calculated
as explained in Sect. 2.3.

2.2 Generation of Lognormal and Binary Media Samples

Several methods exist for generating realizations of random lognormal fields (turning bands
(Tompson et al. 1989; Dietrich 1995), matrix decomposition (Davis 1987). In this study, we
employed a FFT-based random field generator, FFTMA (Le Ravalec et al. 2000). The support
dimensions and statistical parameters (type of distribution and variogram, geometric mean
K,, variance 002, integral scale /) may be adjusted for each realization.

The choice of parameters for the simulations in this first part has been made as following:
Sect. 3.1: Standard normal distribution for In(K): (Ky = 1 m/day ({In(K))= 0), variance
002 =1, lp = 3Ax). Section 3.2: Same mean and integral scale values, the variance 002 was
chosen to match that of the analytical derivations we compare our results to. Table 2 shows
the simulation parameters name, definitions and values used in Sects. 3.1 and 3.2.

In the second part (binary media), first we generate a lognormal distribution (namely
f(K)) with the same mean and variance than the ones used in the first part (Sect. 3). Then
this lognormal distribution is binarized using a threshold value K; to attribute to each fine
grid cell a high-K or a low-K value (with Kpgn = 100 m/day and Kjow = 0.01 m/day). Each
fine grid cell having a value of Kjjk < Kt has, after binarization, a value Klow, while each
having a value of Kjjx > K; has then a value Ky;gn. We recognize that other techniques
could be followed, yielding to different high order correlation structures.

J f(K)dK
K;

2.1.1)

_ In(K,) — <1n<1<>>}
= _ In(Ky) — (In(K))

=0S5erfc
[ (208)"

[ f(K)dK

The volume fraction p is related to K; by Eq. 2.1.1. The proportion p increases with
decreasing K until the high-K fine grid gain connectivity (eventually reaching the percola-
tion threshold). In this way, the connectivity of the high-K facies in the binarized medium is
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Fig. 1 Grey level maps: 2D cut of a 3D isotropic realization of a lognormal media sample (leff) and of a
binary media sample (right). The former corresponds to the media studied in Sect. 3, and is generated with
parameters ({In(K))= 0), og = 1,1y = 3Ax (white (black) colour: high (low) values of K). The latter repre-
sents the media studied in Sect. 4, the underlying lognormal realization having the same parameters, and the
threshold value K is such that the high-K volume fraction p equals 0.5 (see Eq. 2.1.1); (white: Kpigh, black:
Kjow)- The scales presented in Sect. 1.1 are indicated: one pixel in the image corresponds to one fine grid cell
of linear size Ax; the integral scale [ (correlation length of the heterogeneity) equals 3Ax and, here as an
example, A/Ax = 64 (largest coarsening scale considered in this study)

controlled by varying [ in the underlying lognormal media. Figure 1 shows 2D cuts of the 3D
lognormal and binary realizations where the length scales introduced in Sect. 1.1 are indicated.
The variance of the In(K) in the binarized medium can be written as:

b =4 (In(Knign)” p(1 = p) = o3 (p) (2.12)

This (fine grid) variance will be referred as 0]% and will be used to normalize the variance
obtained at a given scale A (coarse scale variance).

The choice of parameters in this second part has been made as following: Sect. 4.1: we
address the limit to very large coarsening scale so this parameter is fixed and with the largest
value considered in this study (A/Ax = 64), we sample p densely in the region around pc.
The number of realizations is limited by the computational cost at this scale. Section 4.2:
Our aim here is to study the pdf of the K¢ distribution, so we performed a large number of
realizations and thus made the sampling of p less dense. Section 4.3: we sample p densely
in the region around p, the diversity of coarsening scales implies a moderate computational
cost and then a moderate number of realizations can be performed.

We used two different values of integral scale [p = 3Ax (spatially correlated) and [y =
0.1Ax (negligible correlation length). Table 3 shows the simulation parameters name, defi-
nitions and values used in Sects. 4.1, 4.2 and 4.3.

2.3 Numerical Calculation of K¢

Because the realizations are in all cases isotropic, the calculation of K is performed in the
vertical direction (this is, we define Keff = Kefr ,, hereafter).

For each coarse grid cell, no-flow (Neumann) condition is applied in the lateral sides (per-
meameter), and a constant head H;, (Hoyt) (Dirichlet) is applied in the top (bottom) side of the
coarse grid cell. Following the nomenclature of Sanchez-Vila et al. (2006), this implies that
the representative property calculated on the coarse grid cell is in truth a “pseudo-effective”
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Table 3 Simulation parameters names, definitions and values for Sects. 4.1, 4.2 and 4.3 (binary media)

Definition Name Section 4.1 Section 4.2 Section 4.3

Fine grid mean of In(K)* (In(K)) O 0 0

Fine grid variance of In(K)? (73 1 1 1

Integral scale® ly 0.1 Ax; 3Ax 0.1Ax; 3Ax 0.1Ax;3Ax

Coarsening scale A Ax 20 — 64 2" (n=2;3:4;5,6) 2" (n=2:3:4:5)

Refinement factor r 1 1 1

High-K facies p 0to 0.57 (dense 0.1 to 0.5 (loose 0.12 to 0.44 (dense
volume fraction sampling) sampling) sampling)

Realizations per parameter set  n 50 5,000 512

4Parameters of the underlying lognormal media (before binarization)

hydraulic conductivity (because it’s dependent on the boundary conditions and not only on
the medium considered). For the sake of simplicity, we will refer to this conductivity as Keft.

The flow is then solved using a finite volume method where internodal transmissivities
are calculated using the harmonic mean rule.

The linear system is solved using a biconjugate gradient stabilized method (BiCGSTAB)
(Van der Vorst 1992) with ILU(0) preconditioning, and CSR storage. The iteration conver-
gence tolerance was set to 10™° m.

Once the flow is solved, K¢ is obtained as:

Q

Keff = ————
¢ (Hin - Hout)

(2.2.1)

Our simulation allows performing a refinement step (subgridding) of degree r = Ax/Ax’
after random field generation but before K¢ calculation in order to gain accuracy and reduce
the bias error in the values of K.fr values caused by the 1D flow approximation which is
implied in the finite volume method (Romeu and Neetinger 1995). The use of this refinement
step involves an important increase in the size of the system of linear equations to be solved
for calculating K.g. Because of this, it may be required to reduce the size of the domain
in study in order to maintain the size of the linear system tractable. The refinement step is
used when comparing to theoretical results in this article (Sect. 3.2). Finally, we emphasize
that wherever the expression “In(K)” is shown in the results, we implicitly imply that the
argument of the logarithm is divided by 1 m/day to make it dimensionless.

3 Lognormal Media: Results

The first part of this study concerns the issue of the pdf and statistics of K¢ distributions as
a function of the coarsening scale for the lognormal stationary isotropic media.

3.1 Lognormality of the Upscaled Distributions:

The distribution of K values for a particular medium depends a priori on its geometry and
on the fine grid K values, but also on the upscaling method and conditions used (global or
local upscaling, choice of boundary conditions, use of border regions (Wen et al. 2003), type
of calculation of internodal transmissivities if using finite volumes) among other factors.
We observed that in our numerical experiments, for a wide range of coarsening scales,
the distribution of In(K.fr) is well fitted by a normal (Gaussian) curve, as can be observed
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Fig. 2 Probability density function of In(Kff) for small and large coarsening scales and their gaussian fit.
Left: 1/1ly = 1.33(M/Ax = 4). Right : »/ly = 21.33(A/Ax = 64). This results correspond to 5,000 realiza-
tions with /[y = 3Ax, Kg = 1 m/day, ag = 1 and gaussian covariance. Histograms are performed following
Scott’s rule (Scott 1979) and then normalized in order to represent the probability distribution of In(Kefr)

in Fig. 2. In this figure, we plot histograms of In(Kcfr) distributions for typical small and
large coarsening scales, and their lognormal datafit. Histograms are performed following
Scott’s rule (Scott 1979), particularly suitable for gaussian-like distributions. Results shown
correspond to 5,000 realizations with /o = 3Ax, K, = 1 m/day ({In(K))= 0), og =1 and
gaussian covariance. This result suggests that the lognormal distribution might represent a
limit distribution for upscaling in given conditions. Two remarks can be done about this
observation: on one hand, a previous work from Fenton and Griffiths (1993) obtained an
analogous result in 2D, which would be consistent with Matheron’s exact result in 2D (the
log of geometric mean is additive in terms of logarithms). The extrapolation of this result to
3D is non-trivial. On the other hand, assuming that performing a field measurement implies
the observation of an “effective property”, this result would be consistent with the fact that
these measurements have been reported to be well represented by lognormal distributions
(Hoeksema and Kitanidis 1985; Sudicky 1986). Establishing overall extent and generality
of the lognormal character of K. distributions is beyond the scope of the present study.
Here, we use this observation as an hypothesis and we translate the study of the statistical
properties to the variation of the mean and variance of In(K.fr) with the coarsening scale.
Further discussion on this result will be presented in Sect. 3.3.

3.2 Variation of Keg with the Coarsening Scale: Comparison with Theory

The numerical simulation described in previous sections is used to calculate the distribution
of K.t values at different coarsening scales. One practical criterion frequently used in flow
simulations for establishing a target coarse grid size is to request the variance at the coarse
scale to be a given fraction of the fine scale one. In this sense, the dependence of af with A
for a simplified description of the heterogeneity, such as the ones we study in this study, may
be a helpful “rule of thumb” for dealing with more complex descriptions.

Attinger (2003) and Eberhard et al. (2004) developed a coarse graining (filtering) tech-
nique that allows to derive the transition of K. between the arithmetic mean and the infinite
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Fig. 3 Symbols: numerical
results for (Kefr)/Kg as a
function of A/ [y for crg =0.5
(triangles), O’g = 1 (squares) and
ag = 2 (circles). Lines:
Analytical derivation of Eberhard
et al. (2004) for the
corresponding values of 002

(as =1,D=3)

<Kgi>/ Kg

3D medium value K gexp(aﬁ x /6) found by Matheron and others. It can be remarked that
they used the assumption of scale invariance of lognormality for closure purposes.

In particular, they provided expressions for the variance af at the coarse scale (to sec-
ond order in perturbation theory) and K (using renormalization group analysis to sum up
higher orders) as a function of A and Iy (Eqgs. (3.2.2) and (3.2.3)) where D is the number of
dimensions, and a; > 1 is a constant.

In order to make the comparison possible between the analytical expressions and our
discrete numerical model, we transformed the variance defined at scale A/lp = 0 (0)2(, ana-

lytical variance) to that defined at scale /[y = 1, (002, numerical fine grid variance), using
Eq. (3.2.3). This transformation factor is left as a function of ay, then both K (A/lp) and
O')%(}» /lo) were fitted simultaneously obtaining a best fit for a; = 1.

Figures 3 and 4 show a comparison between the mean and variance of Kfr obtained
numerically for three different values of 002 (5,000 realizations, [y = Ax, K; = 1 m/day)
and the fit with the analytical expression of Eberhard et al. (2004) (D = 3) for values of o]%

so that the corresponding values of g]% match the former ones used in the simulations. For

ay = 1 and D = 3, the transformation factor between variances at scale A/lp = 1 (002) and
scale A /Iy = 0 (o}.) is given by of = 0.31818 og.

Both numerical model and analytical derivation assume a gaussian isotropic covariance.
In this case, a refinement step of degree 5 (r = 5), introduced in Sect. 2.3, has been used in
the numerical simulations to keep a reasonable accuracy in the calculation of K (Romeu
and Neetinger 1995)

For af (&/lp), numerical results are well fitted by the analytical expression and also one
can observe that the normalized coarse grid variance af r/1lp)/ O'sz is independent of U)% (and

then of ag), which is in accordance with the analytical prediction of Eq. (3.2.3).

For Kt (A/ lp), the agreement is good for the smaller value of fine grid variance (002 =0.5)
but the discrepancy increases as (rg increases and also as A/l increases. This may be due to
bias effects on the calculation of Kefr, which are known to be more important as the variance

increases (Romeu and Neetinger 1995).
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M,

Fig. 4 Symbols: numerical results for the normalized coarse scale variance of In(Keff), o} 2(a /o) /c fasa

function of A/l for 62 =05 (triangles), 002 = 1 (squares) and og = 2 (circles). Line: Analytical derivation
of Eberhard et al. (2004) for all variances

0_2
(K) = K, exp(zf) (3.2.1)
A f J% loas b
Kt (5) = (K)exp 3 D ( ( )) (3.2.2)
e
o; (l—) (erf( ) (3.2.3)

Notice that for large values of 1, we have

2 A 2 5 o loag b
2 (2) > Lror (12) .

D
The ratio N = (%) can be interpreted as the “number of independent heterogeneity units”

contained in the coarse grid cell of size A. Equation (3.2.3) appears then as a form of asymp-
totic variance reduction while increasing coarsening scale.
For the data shown in Fig. 4, we have used the following property:

01% = ng |_exp (201%1 K) — exp (01%1 K)J (3.2.4)
Which for order O((Ili &) becomes:
ok =Kiopg =opmg (Kg=1) (3.2.5)
3.3 Partial Conclusions

In this section, we summarize the results for lognormal media. In Sect. 3.1, our results sug-
gest a persistence of the lognormal character of the distributions through a wide range of
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coarsening scales. The probability distributions of In(Kegr) obtained numerically over 5,000
realizations of lognormal samples are well fitted by a gaussian formula.

Our result is consistent with that of Fenton and Griffiths (1993) for 2D, and a theoretical
foundation for this result could be sought on Matheron’s result, that K¢ equals the geomet-
ric mean for lognormal fields in 2D (Matheron 1967). The idea is that in order to estimate
Kefr for a coarse grid cell, we can replace the ensemble geometric mean by the following
estimator:

i=n /N
Ker = |:H Ki:| (3.3.1)
i=1

This formula may capture the fine scale fluctuations. If it was exact, the emergence of the

lognormality of Kef distribution (or the normality of In(Kefr)) would be directly related to
the central limit theorem. This can be verified by taking logarithms to both sides of Eq. 3.3.1,
the right side being then the sum of independent random values.
In the 3D case, even by means of a power law estimator (Neetinger 1994, Eqgs. 1.2.3), we
cannot possibly make use of the central limit theorem to perform a similar argumentation.
The lognormality of K distribution could also be an artefact coming from the finite size of
our statistical samples. In this order of idea, and in the particular context of upscaling through
a power law formula, Jensen (1998) supports that in many situations power averages of log-
normally distributed variables can be considered as being lognormally distributed. There is
no evidence of mathematical argument to support this assumption, on the other hand it would
be of extremely high computational cost to achieve a statistical sampling that allows one to
distinguish between a lognormal distribution and other “close” distribution (in particular, in
the cases of low variance). Our results can be interpreted within this context and limitations.
We stress that our analysis did not consider two-point statistics at the coarse scale, so we
cannot capture the spatial correlations at this scale.

Once under the hypothesis of the normality of In(Kefr), the mean and variance of its distri-
bution were studied as a function of the coarsening scale. They are found to be in rather good
agreement with analytical derivation of Attinger (2003) and Eberhard et al. (2004). Their
prediction that the normalized coarse grid variance a)% A/ly)/ 002 does not depend on the fine
grid variance c702 but only on the coarsening scale A/l is well reproduced by our results.

4 Binary Media: Results

In this section, we present results for simulations on binary media, focusing our attention on
the variation of the K¢ distributions of and their statistics first as a function of p in the limit
of very large A, and then as a function of p and A.

4.1 Limit to Very Large Coarsening Scale

We present here results for the largest coarsening scale studied (A/Ax = 64) which is an
approximation to the infinite coarse grid cell K¢gr value.

In this limit, the media under study is analogous to a percolation network. The underly-
ing lognormal distribution has K, = 1 m/day ({In(K)) = 0), 002 = 1 and gaussian isotropic
covariance, and [o = 0.1 Ax (negligible correlation length) or/yp = 3Ax (correlated medium).
The variance of the binarized distribution at the fine scale (used to normalize in the figures)
is given by Eq. 2.1.2.
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Fig. 5 Mean of Kqft (left) and normalized variance of In(Kegr) (right) as a function of p for L/Ax = 64
(largest coarsening scale) and /o = 0.1Ax (squares) or o = 3Ax (triangles). Data shown corresponds to 50
realizations for each p value. The normalized variance displays a peak at the percolation threshold p¢, which
value is lower for the correlated case. Dashed line: Maxwell’s approximation (given by Eq. (1.3.1) and valid
for low p). Full line: Data fit with expression of Eq. (1.3.2) for p > p¢ using pc = 0.22(ly = 3Ax) and
pc = 0.31(p = 0.1Ax), yielding © = 1.96 £ 0.1 and 1.68 +£ 0.1 respectively. The values of pc used to fit
correspond to the maximum of the normalized variance

Figure 5 shows the variation of the mean and normalized variance of the distribution of
Kefr (actually of In(Kefr) for the normalized variance, for easier visualization) as a function
of p for A/Ax = 64. The normalized variance is bell shaped and has a peak at p.. The
peak at p = 0.31 for the negligible correlation case (lp = 0.1Ax) is in agreement with the
theoretical value for site percolation in a simple cubic lattice (p. = 0.311).

As g increases to 3Ax (and the connectivity of the high-K fine grid cells increases), pc
decreases to (.22 (this value is taken from the maximum of the normalized variance). This
type of behaviour has already been observed by other authors (Harter 2005; Guin and Ritzi
Jr. 2008). Also as [ increases the percolation transition is smeared out over a more extended
range of p. This can be interpreted in terms of the finite size scaling, with spatial correlations
making the sample smaller in a statistical sense (Hunt and Ewing 2009). This idea has its
counterpart for lognormal media in Eq. 3.2.4 and therein.

In the figure, one can observe that Maxwell’s approximation (Eq. 1.3.1) is in good agree-
ment with our numerical results up to p~0.2 (this approximation is indeed valid for dilute
regime or non-overlapping inclusions (Pozdniakov and Tsang 2004). At this value, the nor-
malized variance displays a marked change of slope which may be due to the fact that high
conductivity cells gain connectivity beginning the onset of percolation, with the dilute regime
is no longer valid. On the other hand, above the percolation threshold, the percolation expo-
nents provided by the data fit (u = 1.96 £ 0.1 for a correlated medium and 1.68 % 0.1 for
negligible correlation length) are in acceptable accordance with the possible values reported
by Hunt and Ewing (2009), ranging from 1.88 to 2.09.

4.2 Keg Distributions: Dependence with Coarsening Scale

We will now address the issue of the dependence of the K pdf with the coarsening scale.
When the coarse grid cell size equals the fine one, each cell has a value equal to Kjoy Or
Khigh- In the limit of very large coarse grid cell, the distribution of Kefr yields a well-defined
Kefr value studied in the previous section. A clear picture of intermediate situation, which
depends strongly on the connectivity properties, is crucial for determining the REV size and
avoiding difficulties in any upscaling procedure.
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Fig. 6 Probability density function of In(K,r) for 5,000 realizations for A/ Ax = 64 (top), A/ Ax = 32 (cen-
ter), A/ Ax = 16 (bottom) (ly = 3Ax). Dashed line p = 0.1; full thick line: p = 0.23; full thin line: p = 0.5.
The behaviour of the distribution of In(Keff) for p = 0.23 shows that near pc(p = 0.22) a well-defined Kefp
value may be reached only approaching A/Ax = 64. This behaviour may have strong consequences in the
REV determination process

In Fig. 6, we depict this situation by showing histograms for three values of coarsening
scales and three values of p (the intermediate one close to p.) for the case [p = 3Ax (the
case lp = 0.1 Ax is rather similar as much as concerns the particular analysis we perform in
this section, but evidently p. is different).

For the largest coarsening scale (A / Ax = 64, top) the scenario is that presented in Sect. 4.1:
the values of K. are well defined for each distribution for all the values of p, and the mean
and variance of the distribution is basically given by the results shown in Fig. 5. For the two
p values far from pc, Kefr approximates Kjow or Kpigh, respectively.

As A/Ax decreases, the distribution for p near p, splits beginning a transition towards the
fine scale bivaluated distribution where K¢ is not well defined and the variance increases
markedly, while for p far from p, there is still a well-defined K. value (the variance however
increases moderately).

The results shown in Fig. 6 suggests that, close to pe, the possibility of defining a REV by
means of a well-defined and representative Kef value may be reached only for A/ Ax = 64.
At this scale, both distributions far and near p. are well fitted by a Gaussian function.

Figure 7 shows quantitatively how the decrease of the normalized variance with A/Ax is
remarkably slower at p near p.. Media in this condition will then frequently present as high
degree of difficulty for upscaling procedures.
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Fig. 7 Normalized variance of In(Kf) for 5,000 realizations of a binary media sample having p = 0.1
(plus sign); 0.23 (squares); 0.5(circles), as a function of 1/Ax(lp = 3Ax). As the p values approaches the
percolation threshold (p. ~ 0.22) the decrease of the normalized variance with A/Ax becomes remarkably
slow comparing to when p is far from pc
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Fig. 8 Scatter plot of In(Kefr) for A/Ax = 16 and /[y = 3Ax. The data shown corresponds to 512 realizations
for each of 21 values of p ranging from 0.13 to 0.45. It can be observed that there is a range or gap of extreme
low probability (In(Kefr) ~ —2). Its width decreases as A/ Ax increases

4.3 Statistics of K¢ Distributions

We address here the statistics of Keg distributions with a dense sampling in p. Figure 8
shows a scatter plot of K values that depicts the percolation transition at an intermediate
coarsening scale (A/Ax = 16). One can observe at this coarsening scale the range of Kefr
values with extreme low probability (In(Kcfr) ~ —2). The width of this range increases as
A/Ax decreases. From distributions such as shown in Fig. 8, we have computed the mean
(Fig. 9) and the normalized variance (Fig. 10). In Fig. 9, one can observe that for [p = 3Ax
and /o = 0.1 Ax, as 1/ Ax increases, the curves tend towards that corresponding to the very
large coarsening scale limit.

In Sect. 4.1, it has been shown that, in this limit an increase of spatial correlation (and
the increase of high-K connectivity involved) have two effects: changing p. and smearing
out the percolation transition over a more extended range of p. On the other hand, it is
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Fig. 10 Normalized variance of In(Kcff) obtained from 512 realizations performed for each of 21 different
p values (each curve corresponds to a In(Keg) distribution such as the one shown in Fig. 7). Left: [p = 3Ax,
right: lyp = 0.1Ax. Squares: 1/ Ax = 32; triangles: A/ Ax = 16; crosses: A/ Ax = 8; diamonds: ./ Ax = 4;
dashed line: analytical value for ./Ax =1

known from finite size scaling that reducing the sample size (i.e. A/Ax) may also generate
the latter. Figure 9 shows how this effect varies with the coarsening scale with respect to
the mean of the distributions. The coincidence between, for example, crosses in Fig. 8 left
(A/Ax = 8; lp = 3Ax), and diamonds in Fig. 9right (. /Ax = 4; [y = 0.1 Ax), may suggest
the difficulty to distinguish, in terms of K statistics, an increase in /o from a decrease in
AJAX.

However these two can be clearly distinguished if analysing the normalized variance
(Fig. 10). This is because due to the change of p, the position of the normalized variance
maximum is shifted. Moreover, the value of this maximum may seem to be independent of
the coarsening scale for /j = 0.1 Ax, while for the case [p = 3 Ax it seems to drift to high
p values as A/ Ax decreases.

5 Summary, Discussion and Conclusions

The results presented in previous sections depict the upscaling scenario for two classical
models of heterogeneous media: lognormal and binary media.
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For lognormal media, the apparent lognormality of K distributions at all scales con-
sidered suggests that this type of distribution may behave as a limit distribution (for given
upscaling conditions). Despite the fact that there is no theoretical evidence that supports this
hypothesis in 3D (for 2D an argumentation is proposed in Sect. 3.3), it would be consistent
with previous results in 2D (Fenton and Griffiths 1993) and also with the lognormal character
of field measurements (as discussed in detail in Sect. 3.1). The emergence of such “stable”
distributions under successive up scaling steps would be a deep property, close to renormaliza-
tion group philosophy. Under this assumption, we focused on the parameters characterizing
this distribution, in particular the mean and variance, as a function of the coarsening scale.
The decrease of these two with increasing coarsening scale has been derived analytically in
previous studies (see references in Sect. 3.2). The mean and variance of the K¢ distribu-
tions obtained in our simulations are in rather good agreement with these analytical results,
in particular, with the fact that the normalized coarse grid variance crf r/ly)/ 002 does not
depend on the fine grid variance 0‘02 but only on the coarsening scale A/ [p.

Next, we considered binary media with two characteristic K values with a given volume
fraction p of high-K facies (binary or bimodal, as opposed to a unimodal lognormal distri-
bution characterized only by a given mean and variance). In this case, the connectivity of the
high-K facies is known to be crucial. As our binary samples are constructed by binarizing
lognormal samples, we were able to modify the connectivity of the former ones by varying
the integral scale /o of the latter ones.

In the limit of a very large coarsening scale, we show that when [ increases (i.e. the con-
nectivity is increased), p. decreases and also the percolation transition is smeared out over a
more extended range of p, as reported by other authors. We must recall that the finite value
of Khigh/Kiow (as opposed to the infinite value of classical percolation systems) used in our
simulations may also contribute to this smearing out; in this study, we do not investigate the
influence and relative weight of this contribution.

At this scale, the K¢f distributions have well-defined Kef value independently of the
value of p, then as ./ Ax decreases, the behaviour is different: near p, the distribution splits
and extends over a wide range of Kefr values, far from p. they increase their width and keep
a well-defined Kefr value that tends slowly to either Kjow or Kpigh. The remarkably slow
rate of decrease of the normalized variance with A/Ax near p. describes quantitatively the
degree of difficulty that this situation may pose for upscaling (compared to p far from p.).

Finally, we compare the results for the two types of media studied. The normalized var-
iance in the lognormal case decreases approximately by a factor of 10% at scale A/ly = 8
(with respect to A/lp = 1) and of 103 at scale A /lo = 16. These values are of the same order
than the corresponding ones for binary media when p is far from p, but differ strongly when
p is near p., in which case the decrease factor is of order 10° for A/Ax = 8 and of order
10! for A/ Ax = 16 (there is a difference of order 102 for both scales). This result implies a
similar degree of difficulty for upscaling procedures in lognormal media and binary media
with p far from p., both cases being markedly less difficult than the case of binary media
with p near p..

6 Perspectives
On the theoretical side, justifying the apparent emergence of a limit distribution of the hydrau-
lic conductivity at a given scale remains challenging.

Matheron’s exact result for lognormal fields in 2D (that K. equals the geometric mean)
suggests a proof for this case, by means of the central limit theorem, even if the result of
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Matheron involves the geometric mean in an averaged sense and not for specific realizations.
In the 3D case such an argument will not work even using a power mean of arbitrary expo-
nent (this exponent is estimated to have a value equal to 1/3 for 3D (Neetinger 1994)). A
first approach could be inversing the problem and finding which types of distributions are
stable under a power mean average. More generally, previous studies of K. of 2D Discrete
Fracture Networks (DFNs) in which random conductivities are superimposed to an existing
geometric disorder (the DFN random geometry) exhibit the emergence of such apparent
lognormal distributions (Charlaix et al. 1987; de Dreuzy et al. 2001a, b,2002). In addition,
such media exhibits also the emergence of power law averages with varying exponents that
depends on the connectivity of the underlying DFN, even in 3D cases (de Dreuzy et al. 2010).
Neetinger and Jarrige (2012) also developed a method allowing to test such results on 3D
DFN involving random fractures. In the same spirit, in close analogy with the already known
percolation scaling laws valid for p near p., we could also anticipate the emergence of a
non-trivial universal stable law for K. distributions for systems with p near p.. Finding
such limiting distributions will probably be of major importance in order to get a better
understanding of the REV variation and determination. It would also be interesting to study
the two-point statistics dependence on the coarsening scale and on the multipoint structure of
the fine scale description. Even though a systematic and intensive numerical study of these
features would require an enormous amount of computational resources due to the size of the
statistical sampling required, this would be essential in order to anticipate which are the main
features that must be kept throughout the upscaling workflow. A compromise must be found
between numerical accuracy, size of the averaging volume, fine scale variance and correla-
tion length. Typically, the case of media having a small correlation length (with respect to a
reference length) and a very large variance 002 such that the product 002 (Io)P remains fixed
seems of interest.

For more practical purposes, treating models with more than two facies remains essential.
The description of a medium with a number of geological facies each one carrying a different
K distribution is of current practice. The possible generalization of the results obtained in
this study for binary media using suitable lumping procedures seems of interest.

Finally, we discuss the possible future applications of the present study. One is related to
multiscale history matching techniques, in which dynamic information is added from coarse
scale to the fine one (Neetinger et al. 2005). The main idea is to use the resulting Kefr distribu-
tions in order to propose a suitable parameterization of the matching problem. The main idea
is to generate these distributions at the coarse scale, even if the associated numerical simula-
tions can still be performed at the fine scale for accuracy purposes. This can be done in zones
close to injection or production wells. This is equivalent to decouple the parameterization
of the geological model and the one associated with the flow simulation. As a prerequisite,
developing such techniques would require at least to know the two-point structure at the
coarse scale. As a first guess, one could use the Keg pdf as computed in this study, while
keeping the fine scale two-point structure properly renormalized. Such an approach seems to
be reasonable in the lognormal case. Its applicability to binary media with p near p. seems
more uncertain. This is an interesting issue, closely related to REV determination problem.
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