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A B S T R A C T   

The equivalent hydraulic conductivity (Keq) relates the spatial averages of flux and head gradient in a block of 
heterogeneous media. In this article, we study the influence of connectivity on Keq of media samples composed of 
a high conductivity (k+) and a low conductivity (k− ) facies. The k+ facies is characterized by a proportion p, and 
also by two connectivity parameters: a connectivity structure type (no, low, intermediate, high), and a corre
lation integral scale lc. 

The probability distribution of Keq, and the critical value of p at which percolation occurs (pav), are studied as a 
function of these connectivity parameters. The distribution of log(Keq) is Gaussian in all cases, so the results are 
presented in terms of the geometric mean (〈Keq〉) and the variance (σ2

log(Keq)
). 

Both quantities show a data collapse if expressed as a function of p − pav (for the variance σ2
log(Keq)

, notably, 
even if 2D and 3D data are plotted together). In 3D, when a connectivity structure exists, Keq is always greater 
than when no structure exists, and increases (while pav decreases) as lc increases. The same is observed in 2D, 
except for the low connectivity structure type (i.e. when the k+ facies is disconnected), that shows an unprec
edented behaviour: Keq is greater in the absence of structure, and decreases (pav increases) as lc increases. Our 
results show that any influence of connectivity on Keq is well accounted for simply by a shift in the percolation 
threshold pav, and then, suggest that Keq is controlled mainly by the proximity to percolation.   

1. Introduction 

1.1. Equivalent conductivity and connectivity 

Achieving a precise description of the equivalent hydraulic conduc
tivity (Keq) of heterogeneous media is of great interest in several sub
surface related disciplines, such as ground water management, waste 
disposal, CO2 storage and hydrocarbon applications. The homogeniza
tion procedure that makes it possible to derive a representative Keq value 
over a certain block, from the point conductivity values k(r), is termed 
upscaling. The equivalent conductivity Keq tends to the effective con
ductivity Keff as the size of the block tends to infinity (Dagan et al., 
2013). 

Frequently, the scarcity of field data in subsurface-related applica

tions is mitigated by the use of a geostatistical stochastic approach 
(Gelhar, 1986; Linde et al., 2015; Godoy et al., 2018). In this approach, 
uncertainty is addressed by generating independent realizations of a 
sample of a subsurface formation. For simplicity, let’s consider a sample 
of linear size L and volume LD, where D is the space dimensionality. The 
point conductivity k(r) is defined over a regular Cartesian grid of linear 
cell size Δ. In each sample, k(r) is considered to be a random process 
characterized by a probability density function P(k(r)), and the spatial 
variation of k(r) is defined by a covariance function with a certain in
tegral length scale (lc). Eventually, the realizations can be conditioned 
with the available field data. For lognormal media, the mean and vari
ance of P(k(r)) may suffice to determine Keq, with a small influence of 
the type of covariance function in 3D (De Wit, 1995). However, in 
certain scenarios, for example if tortuous channels are present, it has 
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been shown (Western et al., 2001) that additional information regarding 
the spatial organization of k(r) is required. 

This motivated an important number of studies that explored con
nectivity as the source of such information. In a first group of studies, 
Zinn and Harvey (2003), and later Jankovic et al. (2017), modified 
multigaussian continuous fields (for which intermediate k(r) classes are 
naturally connected, while the extreme k(r) classes are disconnected), 
by applying a Normal Score Transform to swap the intermediate k(r)
classes with the high (or the low) ones. This made it possible to increase 
(or reduce) the connectivity of the high k(r) classes, without changing 
P(k(r)) or the spatial covariance function of k(r). In these studies, con
nectivity was explored through different configurations arising from the 
reorganization of the k(r) classes, and through the covariance function. 
It was shown that the ratio between the Keq of the connected structure to 
that of the disconnected one can, notably, reach a value of 10 in 2D 
while it decreases to 2.2 in 3D (both for high variances). This shows the 
strong effect of dimensionality. 

In a second group, other authors evaluated new ways to describe and 
measure connectivity, or analyzed how connectivity metrics are corre
lated to Keq. Some of them studied continuous k(r) fields (Masihi et al., 
2016; Tyukhova and Willmann, 2016), while others considered 
multi-facies media, with a discrete distribution of k(r) values (Nurafza 
et al., 2006; Fleckenstein and Fogg, 2008; Vassena et al., 2010; Rongier 
et al., 2016). In all cases, it is concluded that measuring the connectivity 
of the high k(r) classes is crucial to assess groundwater flow. 

1.2. Upscaling and percolation in binary media 

A binary medium (Knudby et al., 2006; King et al., 2001) has a 
proportion p of a high conductivity facies (k(r) = k+ = constant) and a 
proportion (1 − p) of a low conductivity facies (k(r) = k− = constant). It 
is a simplified representation of multi-facies media that makes it possible 
to retain salient geometrical heterogeneity features (Hunt and Idriss, 
2009; Zarlenga and Fiori, 2015), while rendering the parameter space 
more tractable. Nevertheless, binary media may accurately model nat
ural formations (Guin and Ritzi, 2008), for example, in sandstone-shale 
or sand-clay mixtures. Their study constitutes a gateway to understand 
the percolative behaviour of Keq in multi-facies models. Regarding their 
flow properties, a distinctive feature is a sharp increase of Keq when p 
overcomes the percolation threshold pc, i.e, when it appears a spanning 
cluster in the k+ facies (a k+ cluster) connecting the sample along the 
mean flow direction (Hunt and Idriss, 2009). 

Analytical methods to estimate Keq in binary media were developed, 
in general, on the basis of effective medium theory and perturbation 
methods (Maxwell, 1873; Dagan, 1989; Pozdniakov and Tsang, 2004). 
Hashin and Shtrikman (1962) showed that, for binary isotropic media, 
and without taking into account the spatial organization of the facies, 
Keq lies in a bounded range narrower than the one set by the arithmetic 
and harmonic averages (Wiener, 1912). Bernabé et al. (2004) provided a 
simple model for statistical isotropic and infinite media that enables the 
estimation of Keq in the framework of percolation theory. In this model, 
for p < pc, the media is assumed to be composed by isolated inclusions of 
the k+ facies randomly distributed in a matrix of the k− facies, so Keq is 
estimated as the Hashin-Shtrikman lower bound (Eq. (1)). 

Keq = k− +
p

1
k+− k− +

1− p
3k−

; p < pc. (1) 

For p > pc, Keq is mainly controlled by the proportion p* of the vol
ume of the spanning cluster (with p* < p) to the total sample volume. In 
this case, the media is considered as formed by two facies: k+, with 
proportion p*, and a second (fictitious) one, with characteristic con
ductivity kM (k+ > kM > k− ) and proportion (1 − p*). The latter is a 
mixture arising from the combination of the k− facies and the compo
nent of the k+ facies that don’t belong to the spanning cluster. The 
conductivity kM is obtained with Eq. (1), but using (p − p*) /(1 − p*) as the 

relative proportion of the k+ facies in the mixture. An estimation of p* 

can be obtained using the power-law in (p − pc) from percolation theory 
(Stauffer and Aharony, 1994). Finally, Keq is computed using the 
Hashin-Shtrikman upper bound as Eq. (2): 

Keq = k+ +
1 − p*

1
kM − k+ +

p*

3k+
; p > pc. (2) 

Later, Oriani and Renard (2014) improved the model of Bernabé 
et al. (2004) by characterizing the spanning cluster via image analysis, 
and correcting the value of p* using the convex hull of the clusters. This 
model drops the statistical isotropy requirement, and has no size re
strictions, resulting in a more accurate estimation, but is more expensive 
in terms of computing time, especially in 3D. 

As explained above, as many flow features are determined by the 
connectivity of the k+ facies (Nurafza et al., 2006), a percolative analysis 
is of interest for accurate flow modelling and Keq estimation. In this 
regard, we highlight three important issues:  

1. The existence of a spatial correlation of k(r), characterized by the 
integral scale lc, affects the connectivity, as it modifies the size of the 
k+ clusters. Previous works (Harter, 2005; Guin and Ritzi, 2008) 
have shown that an increase of lc leads to a decrease of pc. Also, we 
recall that, keeping all other variables constant, an increase of lc 
typically implies an increase of Keq (Paleologos et al., 1996; Boschan 
and Noetinger, 2012).  

2. Percolation thresholds vary significantly between 2D and 3D. Also, 
in 2D isotropic binary media, only one percolating facies can exist, 
while this restriction does not exist in 3D (Neuweiler and Vogel, 
2007; Zarlenga et al., 2018). It becomes evident that dimensionality 
will strongly affect any connectivity characterization. Moreover, 
several connectivity indicators are borrowed from percolation theory 
(Stauffer and Aharony, 1994; Hunt, 1998; Renard and Allard, 2013).  

3. Due to the finite size of the media samples, finite size scaling affects 
the percolation transition (King et al., 1999). The critical value of p 
for which percolation occurs for a sample of linear size L (here 
termed pav) tends to pc as L→∞. Also, k− > 0, in contrast with formal 
percolation theory for which k− = 0. These finite effects may influ
ence Keq, differently for 2D than for 3D. 

These facts demonstrate that analyzing connectivity features in 2D 
and 3D at the same time is important to gain understanding on how 
connectivity indicators can be used to predict Keq. 

1.3. Keq distributions 

In the stochastic approach mentioned in Section 1.1, the relative 
frequency of Keq values in the ensemble of realizations defines a 
(probability) distribution, i.e. P(Keq) (Fenton and Griffiths, 1993; 
Sanchez-Vila et al., 2006). 

This distribution is often represented by its mean value (〈Keq〉) (the 
first gaussian moment) (Knudby et al., 2006; Oriani and Renard, 2014; 
Liao et al., 2019), and by its variance (σ2

log(Keq)
) (the second gaussian 

moment), particularly for multigaussian media (Dykaar and Kitanidis, 
1992; Attinger, 2003). In the case of binary media, as p approaches pc, 
P(Keq) may undergo a transition from unimodal to bimodal (with two 
well-defined modal Keq values, see Fig. 6 in Boschan and Noetinger 
(2012)). The probability distribution widens, and some values of Keq 

between the modes may have negligible relative frequency (a gap ap
pears in P(Keq)). In those cases, it is necessary to carefully evaluate if 
P(Keq) is appropriately described by only 〈Keq〉 (and eventually by 
σ2

log(Keq)
also). 

Depicting the shape of P(Keq) is then of key importance to gain 
conceptual understanding of the underlying flow situation, particularly 
on the onset of a percolative behaviour, with direct impact in uncer
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tainty management applications. Moreover, the influence of connectiv
ity on P(Keq) becomes of interest, and to our knowledge, has not yet been 
addressed in the literature. 

1.4. Objectives 

The objective of this paper is to analyze the interplay among con
nectivity, percolation and P(Keq) of saturated isotropic binary media. We 
have decided to carry out the study both in 2D and 3D, aiming to provide 
a better understanding of the subtle extrapolation from 2D to 3D, and 
also to obtain insight over the potentially complex behaviour of P(Keq) in 
3D. To this end, we have constructed random binary media samples with 
no, low, intermediate, or high connectivity structure type, in a binary 
media version of the procedure followed by previous authors (Zinn and 
Harvey, 2003; Jankovic et al., 2017; Zarlenga et al., 2018) using 
continuous k(r) fields. The use of binary media makes it possible to 
analyze how connectivity influences Keq from the point of view of 
percolation. We intend to portray here a wide range of connectivity 
scenarios. Connectivity was varied explicitly by changing the connec
tivity structure type and the integral scale lc (these are the connectivity 
parameters that control the spatial organization of the k+ facies), but 
also implicitly by varying the proportion p of the k+ facies. Media 
samples with lc→0 are used to represent the lack of structure. In Section 
2 we present the numerical methodology employed to construct the 
binary samples (FFT-MA generator, Le Ravalec et al. (2000)), to use 
cluster analysis to determine the percolation threshold pc (CONNECT3D, 
Pardo-Igúzquiza and Dowd (2003)), and to compute Keq (MOD
FLOW-2005, Harbaugh (2005)). 

The results are presented in Section 3, where we first examine the 
distributions P(Keq) for the different connectivity structure types. Then, 
the behaviour of the first two gaussian moments of P(Keq), the mean 
〈Keq〉 and the variance σ2

log(Keq)
, is studied as a function of p, lc, and the 

connectivity structure type. 

Later, it is shown that the influence of lc and of the connectivity 
structure type on 〈Keq〉 and σ2

log(Keq)
is well accounted for simply by a shift 

in the percolation threshold pav. Finally, we present a final discussion 
and outline the perspectives for future work. 

2. Numerical methodology 

The first step (described in Section 2.1) of our stochastic approach 
consisted in generating square (2D) or cubic (3D) binary media samples. 
The k+ facies of the samples are characterized by three parameters: a 
connectivity structure type (no, low, intermediate, high), an integral 
scale lc, and a proportion p. Then, k(r) was upscaled from the fine scale Δ 
to the scale L of the sample size (which is constant in this work), 
obtaining one Keq value for each realization (Section 2.2). Finally, we 
have used a cluster identification function to estimate pav for each value 
of lc, and each connectivity structure type (Section 2.3). 

2.1. Generation of binary fields with different connectivity structure types 

The binary media samples were obtained by the following procedure:  

a. Generation of multigaussian media samples, with a standard normal 
distribution of an intermediate indicator ki(r), using an isotropic 
exponential covariance function. These will be referred to as un
derlying (multigaussian) media samples. As explained in Section 1.1, 
for these, intermediate ki(r) classes form a connected matrix, while 
the extreme ki(r) classes form a disconnected matrix. Random field 
generation was performed using a fast Fourier transform (FFT) 
moving average (FFT-MA) method (Le Ravalec et al., 2000).  

b. Binarization by truncation, mapping the ki(r) point values from the 
multigaussian samples onto k+ or k− point values in the target binary 
samples. The truncation schemes shown in Fig. 1 were used to 

Fig. 1. Schematics of the truncation procedure used 
to obtain the target binary samples from underlying 
multigaussian ones. These examples have p = 0.5, 
the black areas correspond to the k+ facies while the 
gray ones correspond to the k− facies. (Left): high; 
(center): intermediate; and (right): low connectivity 
structure types. Note that in the underlying multi
gaussian samples, intermediate ki(r) values form a 
connected matrix (CM), while the extreme values 
form a disconnected matrix (DM).   

Fig. 2. Maps of k(r) for the binary samples used in the present study. (Black): k+, (gray): k− . (Top): 2D binary samples (only a part of them is shown for clarity), with 
p = 0.5 and lc = 3Δ. (Bottom): 3D binary samples, with p = 0.4 and lc = 2Δ. (Left): high; (center): intermediate; and (right): low connectivity structure types. 
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generate binary media samples with high, intermediate or low con
nectivity structure types (Fig. 2). 

For the high connectivity structure type, when the proportion p is 
small, the connected matrix of the underlying multigaussian sample 
(this is, the intermediate ki(r) classes, for which the indicator takes 
values close to zero), becomes the k+ facies after binarization. But, as p 
increases, also the disconnected matrix of the underlying multigaussian 
sample (the extreme ki(r) classes) gradually becomes part of the k+

facies of the binary samples. This is illustrated in Fig. 3, where binary 
media samples of the high connectivity structure type are shown for 
different values of p. For the low connectivity structure type, when the 
proportion p is small, the connected matrix of the underlying multi
gaussian sample becomes the k− facies in the binary samples (and the 
disconnected matrix becomes the k+ facies). But, as p increases, the 
disconnected matrix of the underlying multigaussian sample also be
comes gradually part of the k− facies in the binary samples. The inter
mediate connectivity structure type is obtained by performing a 
standard truncation over the multigaussian samples (Allard, 1993). 
These truncation procedures are depicted in Fig. 1. 

Depending on the connectivity structure type, one or two (equal but 
with opposite signs) cutoff indicator values are required to control the 
proportion p of the k+ facies in the binary samples. 

Fig. 2 shows examples of the resulting binary media in 2D (top, p =
0.5) and 3D (bottom, p = 0.4). A sample with a high (low) connectivity 

structure type is constituted by blobs of the k− (k+) facies embedded in a 
k+ (k− ) matrix. For the intermediate connectivity structure type, neither 
of the facies embeds the other. 

We have verified that the binarization procedure described in step 
(b) maintains the exponential nature of the covariance function, while lc 
changes, depending on the value of p, and on the connectivity structure 
type. The exponential covariance is defined in Eq. (3), where h is the lag 
or distance between two points, lc is the correlation integral scale, and 
C(0) is the variance of P(k(r)). 

C(h) = C(0)exp
(

−
3h
lc

)

(3) 

For the intermediate connectivity structure type, an analytical rela
tion between the integral scales of the gaussian and of the binary media 
can be found in Mariethoz and Caers (2014). We are not aware of an 
analogous formula for the high and low connectivity structure types. 
Because of this, and to compare binary media with the same covariance 
function but different connectivity structure types, it was necessary to 
map the value of lc of the multigaussian samples onto that of the 
binarized ones. The relation between covariances before and after 
binarization is depicted in Fig. 4 for the 2D case, where the covariance 
function for the three connectivity structure types for p = 0.4 are shown, 
along with the ones of the underlying gaussian samples. Note that the 
value of lc of the multigaussian sample required to obtain a given lc of the 
binarized one depends on the connectivity structure type. 

Spatially uncorrelated media samples (lc = 0.001Δ) were used as a 
reference of media with no connectivity structure (i.e., at the scale of the 
sample size). Note that media samples of the three connectivity structure 
types defined above should statistically coincide as lc→0, converging to 
this reference (uncorrelated) case. Also, due to the small lc/L ratio, it is 
reasonable to assume that the ergodic hypothesis holds. 

Aiming to study the percolation transition in detail, we have 
explored 20 values of p in the ranges [0.4; 0.8] for 2D and [0.1; 0.5] for 
3D, having in mind that the theoretical values for media with negligible 
integral scale (lc→0), verified in this work, are 0.593 in 2D and 0.312 in 
3D (site percolation). 

We remark that the sample construction procedure presented here is 
analogous to the technique conceived by Zinn and Harvey (2003), in 
that it makes it possible to control the spatial organization of the high 
k(r) classes while leaving the other parameters unchanged. 

Fig. 3. 2D binary samples (only a part of them is shown for clarity), lc = 3Δ, with a high connectivity structure type. (Black): k+, (gray): k− . (Left): p = 0.4, (center): 
p = 0.6, (right): p = 0.8. When the proportion p is small, the connected matrix is populated by the k+ facies, but, as p increases, the disconnected matrix also becomes 
gradually occupied by the k+ facies. 

Fig. 4. Covariance of k(r), as a function of the lag distance h /L, for 2D binary 
samples ( ) with p = 0.4 and lc = 3Δ (indicated by the vertical line). (△): 
High; ( ): intermediate; (□): low connectivity structure types. The covariance 
functions of the multigaussian samples used to construct the binary samples of 
each connectivity structure type are indicated by ( ) and the corresponding 
coloured marker: ( ): High; ( ): intermediate, ( ): low connectivity struc
ture types. 

Table 1 
Simulation parameter symbols, descriptions and values.  

Description Symbol Values   

2D 3D 

Grid cell size (m)  Δ  1 
Size of samples L  512 Δ  64 Δ  
Integral scale lc  0.001Δ;2Δ; 3Δ  0.001Δ;1.5Δ; 2Δ  
Facies conductivity (m/day)  k+, k− 100, 0.01 

k+ facies proportion  p  [0.4,…,0.8]  [0.1,…,0.5]  

Connectivity structure type – High, low, intermediate  
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The contrast between the characteristic conductivity values for the 
high and low conductivity facies is 104 (k+ = 100 m/day, k− = 0.01 m 
/day). This choice is in line with the proposed percolative approach. In 
the following, it will be assumed that Keq is made dimensionless by a 
factor of 1 m/day. 

The sample sizes are L = 512Δ and L = 64Δ for 2D and 3D respec
tively, and the values of lc are 2Δ and 3Δ for 2D, and 1.5Δ and 2Δ for 3D. 
This choice aimed to equate the statistical sampling between 2D and 3D 
by matching the number of independent heterogeneity units, that can be 
estimated as (lc/L)D (Boschan and Noetinger, 2012). In Table 1, the main 
parameters and variables are presented. 

To study 〈Keq〉 and σ2
log(Keq)

(Section 3.2), we have performed 1000 
realizations for each set of parameters (p, lc, connectivity structure type), 
while 5000 realizations were performed to achieve a satisfactory reso
lution for P(Keq). 

2.2. Computation of Keq 

The effective conductivity was computed in the square or cubic 
domain according to the classic permeameter definition. In this 
approach, a hydraulic gradient is imposed between inlet (Hin) and outlet 
(Hout) faces (Dirichlet boundary conditions), while other boundaries are 
impervious (Neumann boundary conditions). The flow simulations were 
performed using MODFLOW-20051 software (Harbaugh, 2005), that 
applies the finite difference method to discretize the Laplace equation. 
In this scheme, the nodes are located at the center of each square or 
cubic cell and flow takes place only between adjacent faces. The har
monic mean approximation was used to compute the transmisibilities 
between adjacent cells Romeu and Noetinger (1995) (1-D flow 
approximation). The PCG (preconditioned conjugate gradient) was 
chosen to solve the resulting linear system. Once the flow is solved, we 
obtain Keq in the mean flow direction as: 

Keq =
qL

Hin − Hout
(4) 

Where q is the average velocity of the flow through a plane 
perpendicular to the imposed hydraulic gradient ((Hin − Hout)/L). We 
mention that the samples used in the present study are isotropic as an 
ensemble (despite the possible statistical fluctuations among individual 
realizations). The equivalent conductivity Keq can then be well described 
by using a scalar. 

2.3. Cluster analysis and percolation threshold 

Two cells were considered as connected only if they shared a face, 
consistently with the 1-D flow approximation used to compute Keq. The 
CONNECT3D code (Pardo-Igúzquiza and Dowd, 2003) was used to 
identify and label the k+ clusters in each realization (i.e. obtaining a 
cluster identification function). The code outputs a connectivity metric 
(Np) that takes unity value if there exists at least one k+ spanning cluster 
connecting the inlet and outlet faces of the sample, and zero otherwise 
(i.e. it measures connectivity in the mean flow direction). From now on, 
realizations for which Np = 1 will be referred to as percolating re
alizations, while those for which Np = 0, as non-percolating 
realizations. 

Taking into account the stochastic approach, the ensemble mean 
〈Np〉 measures frequency of occurrence of percolation. Moreover, for 
each connectivity structure type and lc, the value of p for which 
〈Np〉 = 0.5 (Harter, 2005), (this is, when exactly half of the realizations 
percolate) was obtained by performing an iterative search. In the 
following, this critical p value will be referred to as pav, an average 

percolation threshold. It should not be considered a connectivity indi
cator, because it cannot be directly measured for any given media 
sample, but, as it is determined by analyzing Np (which is indeed a 
connectivity indicator (Renard and Allard, 2013)), it provides useful 
connectivity information in the percolation framework. The term pc will 
refer to the percolation threshold of infinite media. In Appendix A, the 
dependence of pav with the domain size L, and its convergence to pc as 
L→∞, are analyzed. 

The use of the indicator Np made it possible to obtain P(Keq) sepa
rately for the ensembles of percolating and non-percolating realizations. 
On the other hand, for each realization, the relative proportion p* of the 
spanning cluster was explicitly calculated, and then used in the equa
tions proposed by Bernabé (Eqs.  (1) and (2)) to estimate Keq. 

3. Results and discussion 

As discussed in Section 1.3, in certain scenarios, particularly for bi
nary media, it is necessary to assess if 〈Keq〉 and σ2

log(Keq)
suffice to provide 

an accurate description of P(Keq). In this regard, we first examine P(Keq), 
analyzing briefly the influence of the connectivity structure type on it. 
Secondly, we study the 〈Keq〉 and σ2

log(Keq)
as a function of p, with the 

connectivity structure type and lc as parameters. Finally, we analyze 
how pav reflects the influence of these parameters on Keq. 

3.1. Analysis of the distribution P(Keq)

For ease of visualization and characterization of the distributions, 
we’ll present results in terms of P(log(Keq)). Figure 5 shows the latter for 
2D (p = 0.566, lc = 0.001Δ and lc = 2Δ) and 3D (p = 0.247, lc =
0.001Δ and lc = 1.5Δ). The values of p are chosen so that, both in 2D 
and 3D, 〈Np〉 equals 0.5 for the intermediate connectivity structure type 
(this is, just at percolation with p = pav). It is observed that, in all cases, 
P(log(Keq)) can be fitted satisfactorily by a gaussian function, suggesting 
a lognormal distribution of Keq. When p = 0 or p = 1, the media are 
homogeneous and log(Keq) is equal to log(k− ) or log(k+) respectively. In 
2D, 〈Np〉 = 1 and 〈Np〉 = 0 for the high and low connectivity structure 
types respectively. In 3D, 〈Np〉 = 0.8 and 〈Np〉 = 0.1 for the high and low 
connectivity structure types respectively. For both, 2D and 3D, 〈Np〉 = 0 
for the no structure case (lc = 0.001Δ). The distributions of percolating 
and non-percolating realizations are shown separately for the interme
diate connectivity structure type. Note that there are a number of non- 
percolating realizations with greater Keq values than those of perco
lating ones, with a considerable overlap between both distributions. In 
other words, all parameters kept constant, the occurrence of percolation 
does not imply a higher Keq. 

As discussed in Colecchio et al. (2020), for binary media, P(Keq)

typically undergoes an homogenization from bimodal to unimodal as the 
linear size of the sample L increases. As p approaches pav, the value of L 
required to achieve such homogenization increases. We have verified 
that the distribution P(Keq) is unimodal for all the values of p and lc 
studied in this work, notably even at p = pav, implying that, for the 
chosen sample size L, the above mentioned homogenization is attained. 
Comparing the results in terms of the connectivity structure types, in 2D, 
the distributions P(Keq) for lc = 2Δ are clearly separated but, there is an 
overlap between P(Keq) of the low connectivity structure type and that of 
the no structure (lc = 0.001Δ). In 3D, the distributions for lc = 1.5Δ are 
closer to each other and an overlap does exist between the high con
nectivity structure type and the intermediate one. Note that the proba
bility distributions for the no structure case and the low connectivity 
structure case invert their relative positions in 2D with respect to 3D. 

1 https://water.usgs.gov/ogw/modflow/mf2005.html 
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3.2. Analysis of the first two gaussian moments, the mean 〈Keq〉 and the 
variance σ2

log(Keq)

Figure 6 shows the variation of the geometric mean of Keq (noted 
〈Keq〉) as a function of p. As p approaches the percolation transition, there 
is a sharp increase of 〈Keq〉 (Hunt and Sahimi, 2017). However, this in
crease is smeared-out due to the finite effects mentioned in Section 1.2. 
In the percolation region, 〈Keq〉 depends strongly on the connectivity 
structure type. As an example, in 2D, the values of Keq for the high 
connectivity structure type can be 30 times greater than those for the 
low connectivity structure type. In 3D, this ratio reaches a value of 5. 
These results can be compared with similar ones for lognormal media: 
10 for 2D (Zinn and Harvey, 2003), 2.2 for 3D (Jankovic et al., 2017). 

The difference among the values of 〈Keq〉 for the different connec
tivity structure types is smaller for the lower lc (2Δ in 2D and 1.5Δ in 
3D). On the other hand, 〈Keq〉 increases as lc increases in all cases, except, 
notably, for the low connectivity structure type in 2D, for which it de
creases. This may be due to a more efficient isolation of the k+ clusters, 
or, in terms of the flow structure, and given the imposed boundary 
conditions, to a higher fraction of the flow paths being affected by head 
losses (involving greater energy dissipation). A more detailed discussion 
is presented at the summary (Section 4). The increase of 〈Keq〉 with lc was 
observed in previous works (Paleologos et al., 1996; Boschan and Noe
tinger, 2012), and may be related to the dependence of pav with lc 
(Harter, 2005), which will be discussed in the next section. 

Fig. 7 shows the variance σ2
log(Keq)

, normalized by the variance of k(r)
(σ2

log(k)), as a function of p. A bell-like shape is always observed, the 
maxima are located at different values of p. Note that the maximum for 
lc = 0.001Δ is located at 0.593 in 2D and at 0.312 in 3D, the values of pc 
for a square (2D) or cubic (3D) lattice (Stauffer and Aharony, 1994). 

In all cases, the variance σ2
log(Keq)

increases as lc increases (Boschan 

and Noetinger, 2012). Note that the maximum of σ2
log(Keq)

increases with 
lc, but it is similar for the three types of connectivity structures in 2D, 
and rather similar in 3D. On the other hand, as lc increases, the width of 
the bell increases. 

Also, the maximum slope of the curves in Fig. 6 and the position of 
the maximum in Fig. 7 are related to the occurrence of percolation 
(Boschan and Noetinger, 2012). 

3.3. Percolation analysis 

In this section we focus our attention on the percolative behaviour of 
Keq and its moments, analyzing the critical value pav (calculated as 
described in Section 2.3) as a function of the integral scale lc and the 
connectivity structure type. 

Figure 8 shows the fraction of percolating realizations (〈Np〉) as a 
function of p. Close to pav, 〈Np〉 increases steeply from 0 to 1. An initial 

Fig. 6. Mean 〈Keq〉 as a function of p. (Top): 2D media, ( ): lc = 2Δ; and 
( ): lc = 3Δ. (Bottom): 3D media, ( ): lc = 1.5Δ; and ( ): lc = 2Δ. For 
both: ( , ): High; ( , ): Intermediate; and ( , ): Low connectivity structure 
type. ( ): lc = 0.001Δ (no structure). The (+) signs indicate, for each trend, 
the critical p value at which percolation occurs (〈Np〉 = 0.5). ( ): k− =

0.01 m/day, k+ = 100 m/day. For a given lc, Keq is always greater for the high 
connectivity structure type and smaller for the low connectivity structure type. 
For the same connectivity structure type, a greater lc implies a greater Keq, 
except for the low connectivity structure type in 2D. Also, notably, in 2D, but 
not in 3D, 〈Keq〉 may be smaller for the low connectivity structure type than 
when no structure exists. 

Fig. 5. Probability distributions P(log(Keq)). (Left): 2D at 
p = 0.566 and lc = 2Δ. (Right): 3D at p = 0.247 and lc =

1.5Δ. For both: ( ): lc = 0.001Δ (no structure). ( ): 
Low connectivity structure type. ( ): High connectivity 
structure type. The values of p are chosen so that, for the 
case of the intermediate connectivity structure type ( ), 
half of the realizations percolate (〈Np〉 = 0.5) while the 
other half do not. Their distributions corresponding to 
each half are depicted in dark and light gray lines 
respectively. ( —— ): Fits by a gaussian function. Inset: 
Detail of the distributions for 3D media with low, high and 
intermediate connectivity structure types.   
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estimation of pav was obtained from the intersection of the 〈Np〉 curves 
with the horizontal black line (〈Np〉 = 0.5). Then, by performing an 
iterative search, the value of pav for each parameter set was obtained. 

Figure 9 shows how pav decreases with lc, except for the low con
nectivity structure type in 2D, for which it increases. Here, for the latter 
case, the interpretation of a more efficient isolation of the k+ clusters as 
lc increases, applies as it did in Fig. 6. The reader should note that an 
increase of pav with lc implies that the percolation transition for the 2D 
low connectivity structure case will occur at a greater value of p than 
that for the no structure case. This leads to a noticeable result: that 
introducing spatial correlation may involve a decrease of Keq. This will 
be further discussed in Section 4. The relationship between pav and lc 
shows a rather linear trend for both 2D and 3D. As lc decreases, the 
different connectivity structure types converge into a unique uncorre
lated structure, and pav tends to the site percolation values for a square 
(0.593) and cubic (0.312) lattice. The range of values of lc studied was 
extended to lc = 6Δ in 2D, and to lc = 2.5Δ in 3D, to verify the trend. 

However, we omitted the analysis of Keq for these extended values of lc 
since, in some cases, it was difficult to stabilize the statistical properties 
of the media and the measured lc values differed from the input ones. 
The effect of the fluctuations over the mean values (pav, 〈Keq〉) is small, 
but becomes important over the variance σ2

log(Keq)
. On the other hand, in 

Appendix A, it is shown that the values of pav presented here agree with 
those of pc, the asymptotic regime towards L→∞ being attained. 

Figure 10 shows the variation of 〈Keq〉 with (p − pav), using the values 
of pav from Fig. 9. In this representation, a data collapse is observed, 
independently of lc and of the connectivity structure type, and both for 
2D and 3D. This implies that a shift in pav suffices to account for any 
influence of these two connectivity parameters on 〈Keq〉. Having in mind 
that the high and low connectivity structure types represent two con
trasting connectivity scenarios, this result is noteworthy. 

An estimation based on the work of Bernabé et al. (2004) is shown in 
dashed line (-•-). Here, p* is computed explicitly for each realization, as 
described in Section 2.3. For the lower part of the curve, we take into 

Fig. 8. Fraction of percolating realizations (〈Np〉) as a function of p. (Left): 2D, ( ): lc = 2Δ; and ( ): lc = 3Δ. (Right): 3D, ( ): lc = 1.5Δ; and ( ): lc = 2Δ. 
For both: ( ): High; ( ): Intermediate; and ( ): Low connectivity structure type. ( ): lc = 0.001Δ (no structure). 

Fig. 9. Average percolation threshold pav as a function of lc. (Left): 2D media. (Right): 3D media. For both: ( ): High; ( ): Intermediate; and ( ): Low connectivity 
structure type. The dashed straight lines are guides for the eye. Note that the trends of the three connectivity structure types converge (to the no structure pav value) 
as lc→0. 

Fig. 7. Normalized variance of log(Keq) as a function of p. (Left): 2D media, ( ): lc = 2Δ; and ( ): lc = 3Δ. (Right): 3D media, ( ): lc = 1.5Δ; and ( ): lc =
2Δ. For both: ( , ): High; ( , ): Intermediate; and ( , ): Low connectivity structure type. ( ): lc = 0.001Δ (no structure). The (+) signs indicate, for each trend, 
the critical p value at which percolation occurs (〈Np〉 = 0.5). 
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account only the non percolating realizations, using Eq. (1). Likewise, 
for the upper part of the curve, we use Eq. (2), and consider only the 
percolating realizations. The estimation predicts an important gap of Keq 

values for p close to pav, which is not observed in our simulations. In 
general, the agreement is rather poor in that zone, especially for the 3D 
case. The difference may arise from the influence of flow dead ends of 
the spanning cluster, which is simplified in the estimation of Bernabé 
et al. (2004). 

Figure 11 shows 〈Keq〉 as a function of (p − pav), using a log-log scale, 
for p > pav. For comparison, the power-law derived from percolation 
theory (Eq. (5)) is shown using continuous straight lines, with slopes μ =

1.3 for 2D, and μ = 2 for 3D, as reported in the literature (Stauffer and 
Aharony, 1994). When these slopes are obtained by linear fitting over 
our data, they yield a mean value of μ = 1.33 for 2D and μ = 1.9 for 3D, 
with little variation among the different connectivity structure types and 
lc values. 

< Keq > ∝(p − pav)
μ (5) 

Regarding the value of Keq at p = pav, our results can be contrasted 
with the finite size scaling predicted for a binary media by Efros and 
Shklovskii (1976) (Eqs. (6) and (7)). Using the values of high (k+) and 
low (k− ) characteristic conductivities employed in our work, this 

Fig. 10. Mean 〈Keq〉 as a function of (p − pav). (Left): 2D 
media, (empty markers): lc = 2Δ and (solid markers): lc =

3Δ. (Right): 3D media, (empty markers): lc = 1.5Δ and 
(solid markers): lc = 2Δ. For both: ( , ): High; ( , ): 
Intermediate; and ( , ): Low connectivity structure type. 
( ): lc = 0.001Δ (no structure). The (+) signs indicate, 
for each trend, the critical p value at which percolation 
occurs (〈Np〉 = 0.5). ( ): Estimation based on Efros and 
Shklovskii (1976) for p = pav. (-•-): Estimation based on 
Bernabé et al. (2004). ( ): k− = 0.01 m/day, k+ =

100 m/day. Once the curves are horizontally shifted by 
the corresponding values of pav (shown in Fig. 9), a 
collapse is observed. This suggests that the effect of the 
connectivity parameters over 〈Keq〉 is mainly a shift or 
displacement of the percolation threshold.   

Fig. 11. Mean 〈Keq〉 as a function of (p − pav), for p > pav, in log-log scale. (Left): 2D media, (empty markers): lc = 2Δ and (solid markers): lc = 3Δ. (Right): 3D, 
(empty markers): lc = 1.5Δ and (solid markers): lc = 2Δ. For both: ( , ): High; ( , ): Intermediate; and ( , ): Low connectivity structure type. (× ): lc = 0.001Δ 
(no structure). ( ): Power-law derived from percolation theory using literature values (μ = 1.3 for 2D, and μ = 2 for 3D). 

Fig. 12. Data collapse: Normalized variance of log(Keq) (scaled by 
(L/lc)D) as a function of (p − pav). (Empty markers): lc = 2Δ in 2D 
and lc = 1.5Δ in 3D. (Solid markers): lc = 3Δ in 2D and lc = 2Δ in 
3D. ( : 2D / : 3D): High; ( : 2D / : 3D): Intermediate; and ( : 
2D / : 3D): Low connectivity structure type. ( : 2D / : 3D): 
lc = 0.001Δ (no structure). The (+) signs indicate, for each trend, 
the critical p value at which percolation occurs (〈Np〉 = 0.5). 
(Inset): Detail of the percolation region in linear scale.   
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prediction yields Keq = 1 in 2D and Keq = 0.13 in 3D, as: 
〈
Keq

〉
≃

̅̅̅̅̅̅̅̅̅̅
k+k−

√
= 1 (6)  

and in 3D 
〈
Keq

〉
≃ k+(k+/k− )− 0.72

= 0.13 (7) 

On the other hand, from Fig. 6, we obtain 〈Keq ≃ 1〉 in 2D, and 〈Keq ≃

0.1〉 in 3D. These results show that 〈Keq〉 follows a percolative behaviour 
rather independently of the connectivity parameters. Fig. 12 shows 
σ2

log(Keq)
, scaled by (L/lc)D, as a function of p − pav. In this representation, it 

can be observed that the maximum of the σ2
log(Keq)

(see. Fig. 7) occurs at p 
− pav = 0 in all cases. This result was observed previously by Boschan 
and Noetinger (2012) and is related to that of Masihi and King (2012) 
who found that a maximum in the standard deviation of connectivity 
(quantified by the relative volume of the percolating cluster) occurred at 
pc. The scaling factor (L/lc)D can be interpreted as the number of the 
independent heterogeneity units (if L >> lc), making it possible to 
match the statistical sampling between 2D and 3D. For the cases with lc 
= 0.001Δ, the variance was scaled by (L/Δ)

D since the number of the 
independent heterogeneity units equals the number of cells. 

The collapse observed in Fig. 12 is remarkable taking into account 
that data for 2D and 3D media are plotted together, for all the connec
tivity structure types and lc values studied. 

4. Summary, conclusions and perspectives 

The main result of this paper is that any influence of the studied 
connectivity parameters on the mean and the variance of Keq is simply 
reflected in a shift (or displacement) in the percolation threshold pav, 
both in 2D and 3D. Except for this shift, the dependence of those mo
ments with p is almost identical for all the connectivity scenarios 
investigated, and follows the scaling predicted by percolation theory. 

We reformulate here for 2D and 3D binary media, and then, using a 
percolative approach, the question posed by Zarlenga et al. (2018) for 
lognormal continuous media regarding the impact of connectivity for 
formations sharing the same P(k(r)) and covariance. In terms of pa
rameters, the roles of the connectivity structure type and of the integral 
scale lc are conceptually similar in both studies (with the addition of a no 
structure case in the present one), while the k+/k− ratio in binary media 
plays the role of the variance for lognormal media. However, the pro
portion p is intimately related to a percolative approach. 

Having in mind that the analyzed distributions P(log(Keq)) are always 
unimodal and Gaussian, and then, well defined by their mean and 
variance (no information about gaussian moments of higher order is 
required), the result can be extended in a straightforward manner to the 
distribution P(log(Keq)) itself. 

However, for smaller sample sizes L, P(log(Keq)) may become 
bimodal (Colecchio et al., 2020), with a greater contrast between 
percolating and non percolating realizations. In that case, it is not 
evident if the observed collapse would hold. This remains an open issue 
and shall be addressed in future works. On the other hand, the validity of 
the present results for greater sample sizes is analyzed in detail in 

Appendix A. There, it is shown by extrapolation from a set of smaller 
subsamples of increasing size that, for the sample size used in this work, 
pav has already attained its asymptotic behaviour (L→∞). This suggests 
that the data collapse observed in Figs. 10 and 12 would hold for largest 
sample sizes L, and in particular, for L→∞. 

We now focus our attention on the noticeable behaviour of the low 
connectivity structure type in 2D, for which 〈Keq〉 decreases (Fig. 6), and 
pav increases (Fig. 9), as lc increases, as opposed to all other cases. To our 
knowledge, this behaviour has never been previously observed in the 
literature, where it was always found that the appearance of a spatial 
correlation implied an increase of 〈Keq〉 (Paleologos et al., 1996; Boschan 
and Noetinger, 2012) and a decrease of pav (Harter, 2005; Guin and 
Ritzi, 2008). 

This feature may help understanding, from the percolation point of 
view, why, when comparing media with the same P(k(r)) and covari
ance function, but different connectivity structure types, a greater 
contrast of 〈Keq〉 values may exist in 2D than in 3D. In the work of 
Zarlenga et al. (2018), it is suggested that this may be originated in a 
higher probability of existence of a low conductivity barrier extending 
across the entire sample cross section. In that matter, valuable infor
mation is available for binary media: in 2D, only one facies can percolate 
at a time, while this restriction is not present in 3D (Neuweiler and 
Vogel, 2007). For example, for the low connectivity structure type, at 
low values of p, we have indeed verified that the k− facies forms a 
spanning cluster, preventing the k+ facies to do so. In 3D, as p increases, 
both facies can form a spanning cluster at the same time. 

Regarding connectivity and percolation, the percolation threshold 
has been used in previous works by other authors to measure connec
tivity for continuous media in the framework of the critical path analysis 
(Knudby and Carrera, 2005; Masihi et al., 2016). This procedure re
quires a transformation that consists in adjusting a threshold until a k+

path spanning the sample appears. Likewise, we acknowledge the lim
itation arising from the fact that pav cannot be measured for any given 
media sample. Other connectivity indicators based on statistical mea
surements of the cluster sizes, such as the average cluster size, or the 
integral of the connectivity function (Western et al., 2001), were eval
uated in the course of the present study, without any significant findings. 

Future research should investigate percolation and connectivity on 
ternary media, to later address more realistic multi-facies models. 
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Appendix A. Finite size effects 

In this appendix, we analyze how pav behaves for subsamples of linear sizes λi < L, aiming to verify by extrapolation if for the employed sample size 
L, pav has already attained its asymptotic infinite value pc, and then, if our results are valid for greater sample sizes. The chosen linear subscales were λi 

= L/2i, with 0 ≤ i ≤ 5 for both 2D and 3D (i is an integer). For each subsample, 〈Np〉 is calculated as shown in Section 2.3. 
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Figure A.1 shows the variation of 〈Np〉 with p for each λi, using lc = 3Δ for 2D (left) and lc = 2Δ for 3D (right). There is an intersection point 
common to all the subscales, from which pc for L→∞ ( ) is estimated. 

Figure A.2, shows the variation of pav as a function of λ, estimated by interpolating the value of p for which 〈Np〉 = 0.5 (full horizontal line in 
Fig. A.1). With these results, we have verified that pav(L) ≃ pc for the cases with higher lc (3 Δ in 2D and 2Δ in 3D). This result can be extended to the 
cases of lc = 2Δ in 2D and of lc = 1.5Δ in 3D, that have smaller finite size effects (due to the lower lc/L ratio). 
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