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a b s t r a c t 

In large scale heterogeneous aquifer simulations, determining the appropriate coarsening scale 𝜆 to define an 

effective hydraulic conductivity K eff is a challenging task, that involves a trade-off between accuracy and cost. 

Efficiently adjusting the scale 𝜆 is then key, in particular for uncertainty quantification. In this paper, we obtain 

improved analytical results for the variance of K eff, valid at any scale, in the context of energy dissipation formu- 

lation. Using this formulation, we then derive an efficient K eff numerical estimator, and compare it with those of 

the potential-flow average and permeameter formulations in 2D, for lognormal and binary media, over a wide 

range of 𝜆 and of heterogeneity. We analyze the probability density function (pdf), mean, and variance, of these 

estimators, comparing them with the analytical results. In the lognormal case, the pdf’s are rather similar for 

the three estimators, and remain lognormal at all scales. In the binary case, slow convergence to an asymptotic 

regime is observed close to the percolation threshold. 
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. Introduction 

Describing effective properties of heterogeneous media has impor-
ant applications in many fields of engineering and science. For exam-
le, the electrical or thermal effective conductivity of mixtures, or elastic
roperties of composites materials have been studied since many years
go ( Maxwell, 1873; Bruggeman, 1935; Landau and Lifshitz, 1960; Au-
iault, 1983; Willot and Jeulin, 2009; Zhou et al., 2016 ). In particular,
etermining an effective hydraulic conductivity is of major interest in
 variety of disciplines related to subsurface flow, such as groundwater
ow characterization ( Renard and De Marsily, 1997; Matheron, 1967;
agan, 1989; Dagan et al., 2013 ), Carbon Capture Utilisation and Stor-
ge (CCUS) development ( Akber Hassan and Jiang, 2012; Celia et al.,
015 ), and oil and gas reservoir engineering ( King, 1989; Durlofsky,
991; 1992; Preux, 2016; Malinouskaya et al., 2018 ). The scarcity of
eld data ( Matheron, 1967; Dagan, 1989; Hristopulos, 2020 ) makes it
ecessary to perform some sort of interpolation, with frequent use of
 stochastic approach ( Gelhar, 1993; Linde et al., 2015; Godoy et al.,
018 ) that treats the point conductivity values as a random process,
ventually accompanied by field data conditioning. While the use of
his approach permits a good management of uncertainty, it turns too
ostly to solve the flow at the fine scale provided by laboratory (micro-
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omography, synchrotron), or geological sources ( Dagan et al., 2013 ),
pecially for large domains. 

In addition, one may want to incorporate data obtained at different
upport scales before interpolation. To alleviate this issues, upscaling
rocedures allow us to perform a mapping from a fine scale onto a coarse
cale, in which the solution of the flow is less costly. 

Fig. 1 shows the lengthscales and geometrical features of the upscal-
ng process. The fine scale conductivity k ( r ) ( 𝐫 is the position vector) is
efined over the regional domain 𝜔 ⊂ℜ 

D , (dimension D = 1, 2 or 3) at
 support scale Δ. The coarsening scale 𝜆 determines a domain ϑ, over
hich the effective hydraulic conductivity K eff is defined. One the one
and, for practical and conceptual purposes, we can establish an upper
ound L for 𝜆, determined by the largest subdomain Ω over which it is
till possible to solve the flow, eventually imposing boundary conditions
t 𝜕Ω if natural flow conditions are unknown. For example, L could be
 characteristic aquifer scale. On the other hand, a lower bound for 𝜆
s given by the support scale Δ. The effective conductivity of a block
r subdomain ϑ, defined by the coarsening scale 𝜆, i.e. K eff( 𝜆), depends
n the values of k ( r ) within ϑ, but also on the conditions at the bound-
ry 𝜕ϑ, which may be imposed or known. Moreover, K eff( 𝜆) is a tensor
n principle, however, for isotropic media, and certain flow conditions
 Sánchez-Vila et al., 1995; Vereecken et al., 2007 ), the use of a scalar
pril 2020 
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Fig. 1. Lengthscales and geometry of the upscaling procedure: The fine scale 

conductivity k ( r ) is defined over the regional domain under investigation 𝜔 , at 

a support scale Δ. The upscaling procedure maps k ( r ) onto K eff( ϑ), while ϑ⊂Ω
is defined by the coarsening scale 𝜆, with Δ < 𝜆 < L . 
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 eff is appropriate. Finding a suitable coarsening scale 𝜆 requires deal-
ng with a trade-off between accuracy and cost: as 𝜆 increases, the cost
o solve the flow decreases, but some details of the heterogeneity (and
f the flow) get lost, and the values of K eff become less representative of
he fine description. The choice of a scale 𝜆 that retains the most salient
ow features, while keeping the cost of the flow solution low, makes
pscaling a challenging task. 

In the following section, we revisit briefly some upscaling results,
ith focus on the types of media studied in most works, including the
resent one, i.e., lognormal and binary media, to later discuss K eff dis-
ributions, and some upscaling formulations. 

.1. Previous results 

Analytical methods like bounds-based approaches ( Hashin and
htrikman, 1962; Renard and De Marsily, 1997; Le Loc’H, 1987; Pozd-
iakov and Tsang, 2004 ) or power averaging ( Journel et al., 1986; Des-
arats and Srivastava, 1991; Masihi et al., 2016 ) provide a remarkable
nsight, although, as they estimate K eff from the point values k ( r ) only,
hey disregard the influence of the flow behavior at 𝜕Ω. 

Depending on the detailed context, homogenization techniques
 Auriault, 1983; Durlofsky, 1991; Jikov et al., 2012; Armstrong et al.,
019 ), volume averaging techniques ( Hassanizadeh and Gray, 1979;
uintard and Whitaker, 1998; Durlofsky, 1998; Whitaker, 2013; Gray
nd Miller, 2005; Leung and Srinivasan, 2012; Wood and Valdés-
arada, 2013; Davit and Quintard, 2017; Aguilar-Madera et al., 2019 )
r stochastic perturbation theory ( Landau and Lifshitz, 1960; Matheron,
967; Dagan, 1989; King, 1989; Rubin and Gómez-Hernández, 1990;
ndelman and Dagan, 1993a; 1993b; Noetinger, 1994; Indelman and
bramovich, 1994; Ababou, 1994; Abramovich and Indelman, 1995;
oetinger and Gautier, 1998; Noetinger, 2000; Liao et al., 2019 ) were
eveloped over many decades. All these methods provide a rigorous an-
lytical framework supporting the existence and uniqueness of K eff, for
 wide variety of media types. 

Analytical efforts took place mainly using perturbation theory
 Gelhar, 1993; Dagan, 1989 ). The so called Landau-Lifschitz-Matheron
LLM) ( Landau and Lifshitz, 1960; Matheron, 1967 ) formula reads: 

 eff ∶≃
⟨ 
𝑘 
(1− 2 

𝐷 
) 
⟩ 1 

(1− 2 
𝐷 

) 
, (1)

n the case of a lognormal distribution of fine scale conductivity, this for-
ula can be written under the equivalent form ( King, 1989; Noetinger,
994 ): 

𝐾 eff⟩ = exp ⟨log ( 𝑘 ) ⟩𝑒 ( 1 2 − 1 𝐷 ) 𝐶 log 𝑘 ( 𝐫=0) = 𝐾 𝑔 𝑒 
( 1 2 − 

1 
𝐷 
) 𝐶 log 𝑘 ( 𝐫=0) . 

he notation ⟨⋅⋅⋅⟩ indicates ensemble arithmetic averaging over all the
ossible realizations of the fine scale structure. K g denotes the geometric
ean of the fine grid conductivity, and 𝐶 log 𝑘 ( 𝐫 = 0) the variance of its
ogarithm. In this work, wherever the expressions log ( k ) or log ( K eff)
re shown, it is implied that the argument of the logarithm is divided
y 1 m/day, to make it dimensionless. 

In most cases, an ergodicity assumption allows to replace the en-
emble average by a spatial average ( Ababou, 1996; Sanchez-Vila et al.,
006 ), such that for finite block of size L , one estimates K eff as: 

 eff𝑏𝑙𝑜𝑐𝑘 
≃
( 

1 
𝑉 ∫𝑏𝑙𝑜𝑐𝑘 𝑘 ( 𝐫 ) 

(1− 2 
𝐷 
) 
𝑑 𝐷 𝐫 

) 

1 
(1− 2 

𝐷 
) 

(2)

This formula, with dimension 𝐷 = 1 , 2 , 3 whose evaluation is
traightforward, is exact in 1D for any type of media, yielding the har-
onic average. In 2D, it corresponds to the geometric average that was

ound to be exact in 2D for lognormal media by Matheron (1967) , who
erived it using an elegant duality argument specific to 2 dimensions.
n 3D, the formula is exact up to second order ( Dagan, 1993 ) with re-
pect to log-conductivity variance (using a series expansion of K eff up
o 4th order in powers of the log-conductivity fluctuations). But in 3D,
he proposed formula was shown to be inexact at third order by several
uthors ( Indelman and Abramovich, 1994; De Wit, 1995; Stepanyants
nd Teodorovich, 2003 ). 

Moreover, higher order results were shown to be structure depen-
ent: this prevents the existence of a local evaluation expression like
q. (1) in 3D. However, numerical tests carried out show that LLM for-
ula is quite robust in 3D even for large log-conductivity variances

 Dagan, 1989; Romeu and Noetinger, 1995; Renard and De Marsily,
997 ). Some generalization of such approaches for anisotropic cases
ere revisited recently by Liao et al. (2019) . 

From a more geological point of view, a frequent organization of
he subsurface heterogeneous formations in a number of hydrofacies,
hat correspond to different types of rock, or sediments, having a well
efined hydraulic property, such as porosity or permeability, may be
bserved in natural systems ( Journel et al., 1986; Beucher and Renard,
016 ). Each facies possesses its own characteristic features. That pro-
oted the study of the effective conductivity of composite media. Bi-
ary or bimodal media are the simplest cases, while still retaining the
omplexity of percolative systems. These types of media have been ex-
ensively studied using self-consistent effective medium approaches in
he electrodynamical or elasticity contexts ( Maxwell, 1873; Bruggeman,
935; Landau and Lifshitz, 1960; Auriault, 1983; Pozdniakov and Tsang,
004 ). 

Analytical results, based on a mixing of characteristic conductivity
alues and bounds ( Hashin and Shtrikman, 1962; 1963 ), exist for this
ype of media ( Bernabé et al., 2004 ); in them, connectivity is implicitly
aken into account. 

Other authors ( Pozdniakov and Tsang, 2004; Knudby and Carrera,
005; Guin and Ritzi, 2008; Bernabé et al., 2016 ) studied numerically
he influence of the contrast between the high and low conductivity
omponents 𝑘 + and 𝑘 − . The abrupt change in K eff that takes place close
o the percolation transition, when the 𝑘 + component becomes con-
ected, poses difficulties during the upscaling procedure ( Boschan and
oetinger, 2012 ). 

Indeed, percolation theory scaling ( Berkowitz and Balberg, 1993;
tauffer and Aharony, 2014; Hunt et al., 2014; Hunt and Sahimi, 2017 )
as been used to assess K eff in this type of media, but some restrictions
xist: 

• This scaling is only valid for media in which the proportion of high
conductivity medium is close to the percolation transition, 

• Percolation transition is smeared-out by finite size effects and finite
conductivity contrast values. 

.2. K eff probability distributions 

Due to the fact that subsurface uncertainty is frequently dealt with
y using a stochastic approach, it is appropriate to treat K eff as a ran-
om variable characterized by a probability distribution more than by
 deterministic value. 
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Fig. 2. Probability density function P ( K eff, 𝜆) for increasing values of the coarsening scale 𝜆. Left: Fine scale distribution P ( k ( r ), Δ), where k ( r ) follows, as an example, 

a lognormal distribution. Center: P ( K eff, 𝜆) becomes narrower as 𝜆 increases. Right: For 𝜆 ≃ L, P ( K eff, 𝜆) approaches a delta-like function centered on a single K eff
value. For dimensional reasons, the K eff is normalized by a unit reference conductivity of 1 m/day. 
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Although the literature mainly focuses on the firsts moments of the
robability density function (pdf), such as the mean and variance ( Rubin
nd Gómez-Hernández, 1990; Sánchez-Vila et al., 1995; Sanchez-Vila
t al., 2006 ), the shape of the pdf provides unique insight on the under-
ying flow situation. For example, in media samples near percolation, a
imodal pdf may yield a mean K eff value that truly has a negligible oc-
urrence probability: this situation may easily arise when dealing with
ractured media or, in general, with media possessing a high degree of
eterogeneity. The pdf of K eff depends on the coarsening scale 𝜆, and
ill be noted P ( K eff, 𝜆). 

For clarity, P ( K eff, 𝜆) undergoes a transition from P ( k ( r ), Δ) to P ( K eff,

 ) as 𝜆 goes from Δ to L . For 𝜆 = Δ, the distribution of k ( r ) is recov-
red, while for 𝜆 ≃ L, P ( K eff, 𝜆) will tend toward a delta-like distribu-
ion sharply peaked around a stable K eff value (see Fig. 2 ). If it is possi-
le to define a characteristic lengthscale (for example an integral scale
 ) for the media under consideration, a crossover is expected when 𝜆
pproaches it. More conceptually, a representative elementary volume
REV) may be determined by inspecting significant changes of the shape
f P ( K eff, 𝜆). The fact that the statistical sampling becomes poorer as 𝜆
ncreases, can be compensated, in the framework of the stochastic the-
ry, and assuming ergodicity, by an increase in the number of ensemble
ealizations. 

The behavior of P ( K eff, 𝜆) was addressed in several studies ( King,
989; Sanchez-Vila et al., 2006; Wen and Gómez-Hernández, 1996; Wu
t al., 2013 ). In Boschan and Noetinger (2012) , the convergence of
 ( K eff, 𝜆) was studied in 3D for lognormal and binary media. In the log-
ormal case, P ( K eff, 𝜆) kept its lognormal nature as 𝜆 increased. If this
esult hold in 2D (this will be analyzed in the present work), it might
tem from the work of Matheron (1967) . In the binary case, it was shown
hat the convergence to a stable K eff is slower when the 𝑘 + component is
lose to the percolation transition ( Stauffer and Aharony, 2014 ). Finally,
nder the ergodic hypothesis, several studies assessed the use of filtering
echniques to derive P ( K eff, 𝜆) at all scales ( King, 1989; Noetinger and
autier, 1998; Noetinger, 2000; Noetinger and Zargar, 2004; Attinger,
003; Eberhard et al., 2004 ). 

.3. Upscaling formulations and numerical implementations 

The fact that analytical results are limited to some academic cases,
nd strictly valid only up to second order in 3D, imposes the use of nu-
erical techniques to obtain K eff as well as its distribution by means of
onte Carlo simulations. Several numerical techniques were developed

sing different approaches and provide accurate solutions ( Desbarats
nd Srivastava, 1991; Durlofsky, 1991; Desbarats, 1992; Quintard and
hitaker, 1998; Wang et al., 2014; Zheng et al., 2017; Wang et al.,

018 ). The numerical implementations calculate a value K eff in ϑ from
he fine conductivity field k ( r ), and from the boundary conditions at 𝜕ϑ,
n what constitutes a numerical solution of the closure problem posed
y the associated Laplace equation. Moreover, some of them use bor-
er regions, including information of the outer neighbourhood of 𝜕ϑ
 Wen et al., 2003 ). Two aspects of the solution of the closure problem
y numerical simulations stand out: 

1. The task of finding the optimal scale 𝜆 in each flow scenario
makes upscaling a multiscale problem par excellence. 

2. The choice of the formulation, in particular that of the boundary
conditions, strongly affects accuracy and numerical efficiency.
For example, imposing boundary conditions at 𝜕ϑ decouples the
flow in ϑ from its outer region, in a rather invasive procedure, in
view of item 1). In that sense, solving the flow in Ω once, and then
employing this solution to estimate P ( K eff, 𝜆), i.e., seems less in-
vasive and more efficient, but requires the ability to solve larger
systems of equations. 

From the existing upscaling formulations, the most widely used is the
ermeameter (Darcian) one, which, as a particularity, isolates the flow
n ϑ, suffering from the drawback explained above. This formulation,
nd its implementation, will be formally introduced in Section 2.2 . An-
ther frequent formulation, ( Rubin and Gómez-Hernández, 1990 ) and
 Sánchez-Vila et al., 1995 ), uses the solution of potential and the associ-
ted flow in Ω, evaluating their averages over 𝜕ϑ to obtain K eff. In order
o obtain a scalar K eff, some assumption is required. 

Finally, Indelman and Dagan (1993a,b) ; Bøe (1994) proposed that
 eff could be defined by assuming that the dissipated energy is conserved
uring the upscaling procedure. This might be the strongest conceptual
efinition ever formulated, however, its implementation to obtain K eff

s mathematically difficult. 
Aiming to reduce the computational cost, a number of approaches

hat combine different formulations were proposed ( Chen et al., 2003;
auer et al., 2008; Wu et al., 2013; Karimi-Fard and Durlofsky, 2016 ),
ith the support of ergodicity considerations ( Ababou et al., 1989;
babou, 1994; 1996; Desbarats and Srivastava, 1991 ). 

.4. Objectives 

In this paper, we intend to explore analytically and numerically the
ultiscale nature of the upscaling procedure in the context of the dif-

erent formulations in 2D. On the one hand, after reviewing the existing
ody of literature, we update the formulae introduced in previous stud-
es to characterize the mean and variance of K eff, valid at the scale Ω
t which the boundary conditions are imposed. We derive, in the con-
ext of the energy dissipation formulation, a new expression for the
ariance, this time, valid at any subscale ϑ⊂Ω, up to second order in
erturbation theory. On the other hand, using that formulation, we de-
ne and implement a new numerical estimator of K eff based on a scalar
nergy dissipation average. This estimator can be obtained at any sub-
cale 𝜆 with nearly negligible additional CPU time once the potential
n Ω is solved. Aiming to provide a comprehensive view, the pdf, the
ean and the variance of this estimator are compared with those of the
otential-flow average estimator, and of the permeameter Darcian one,
ver a wide range of coarsening scales. This study is performed over
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∀

ognormal media samples with a wide range of fine grid variances, and
ver binary media samples spanning the percolation transition. 

The paper is organized as follows: we start by presenting the over-
ll geometry and notation, considering a steady-state Darcian flow in
n heterogeneous porous medium, and perform some algebraic manip-
lation to express K eff in terms of the viscous dissipation. We intro-
uce then ( Section 3.1 ) a useful variational derivation, that allows us
o define K eff in terms of a minimization of that dissipation. By using
unctional expansion techniques already developed in a previous study
 Noetinger, 2013 ), we provide expressions for the variance of K eff in Ω
p to second order in the perturbation expansion (valid for small vari-
nces), later improving it, for higher variances, by using a mean-field
pproximation. After some more manipulation, we get in position to
how how these results are valid at any subscale (i.e., the coarsening
cale 𝜆), even if the variational formulation cannot be applied at any
cale smaller than Ω (the scale in which the boundary conditions are
mposed). The result depends also on the covariance of k ( r ), and on
, while it is possible to apply again the mean-field technique, now at
his scale, to improve it. Section 6 introduces the numerical methodol-
gy with the implementation of the three formulations, while Section 7 ,
resents firstly a numerical validation, and then, the results regarding
he multiscale dependence of K eff under the different formulations. 

. Geometry, driving equations and notations 

.1. Geometry and local equations 

We focus our attention on a block 𝛺 to be upscaled in D dimensions,
 square in 2D or a cube in 3D. The edges of that domain are of size L
n the D directions, as sketched in Fig. 1 . The potential is driven by the
ollowing Laplace equation, to be solved in the domain 𝛺: 

 ⋅ ( 𝑘 ( 𝐫 )∇ 𝑝 ( 𝐫 ) ) = 0 , (3)

he local potential is denoted by p ( r ). This equation is a combination of
ass or charge conservation with a phenomenological equation relating

he local flux to the local potential gradient, such as Joule, Darcy or
ourier’s law that may arise after a proper averaging of the sub-scale
ransport processes ( Hassanizadeh and Gray, 1979 ). In order to get a
ell defined problem, Dirichlet or Dirichlet-Neumann conditions must
e specified at the frontier 𝜕𝛺 of the domain. These conditions will be
iscussed in the next section. The local conductivity, denoted by k ( r ) is
ssumed to be scalar and to depend on position r . The conductivity field
an be discontinuous with respect to r . 

.2. Classical Darcian definition of the effective conductivity 

Here, we defer the discussion of the upscaling problem to refer-
nces in Matheron (1967) , Durlofsky (1991) , Neuman and Orr (1993) ,
enard and De Marsily (1997) , Quintard and Whitaker (1998) ,
illot and Jeulin (2009) , Jikov et al. (2012) . The effective conductivity

an be defined using the solution of the Laplace Eq. (3) , to be solved
ith Dirichlet boundary conditions at the inlet/outlet, denoted by P in 
nd P out . Neumann no-flux boundaries are imposed on the faces of the
omain parallel to the average imposed flow, which will be the x direc-
ion in the rest of the paper. This definition of K eff is the so-called per-
eameter definition that will be sometimes denoted by K perm 

. This cor-
esponds physically to the basic conductivity measurement that could
e performed at the laboratory, both in the Darcy or electrical context.
ther boundary conditions, such as periodic ( Auriault, 1983; Durlofsky,
991; Quintard and Whitaker, 1998; Noetinger, 2013 ) can be chosen,
ut that does not change drastically the analysis, so permeameter con-
itions will be kept throughout the paper. 

By identification with the homogeneous case, effective hydraulic
onductivity is given by: 

 eff = 

𝑄 

𝐿 𝐷−2 ( 𝑃 − 𝑃 ) 
. (4)
𝑖𝑛 𝑜𝑢𝑡 
ere, Q denotes the total fluid flux flowing in any section of the domain
erpendicular to the mean flow x direction: 

 = ∫𝐼𝑛𝑙𝑒𝑡 𝑓𝑎𝑐𝑒 𝑑 
𝐷−1 𝐫 𝑘 ( 𝐫 )∇ 𝑝 ( 𝐫 ) ⋅ 𝐧 . (5)

ere, p ( r ) is the unique solution of the boundary value Laplace
q. (3) with the permeameter forcing boundary conditions. 

. Effective conductivity and viscous dissipation 

For our purpose, it is useful to introduce an equivalent algebraic
xpression of K eff that was introduced in the porous media context
y Jacquard (1965) , Matheron (1967) , and revisited later by Wen and
ómez-Hernández (1996) , Sánchez-Vila et al. (1995) : 

 ( 𝑃 𝑖𝑛 − 𝑃 𝑜𝑢𝑡 ) = ∫𝜕Ω 𝑑 
𝐷−1 𝐫 𝑝 ( 𝐫 ) 𝑘 ( 𝐫 )∇ 𝑝 ( 𝐫 ) ⋅ 𝐧 

= ∫𝛺 𝑑 
𝐷 𝐫 𝑘 ( 𝐫 ) ∇ 𝑝 ( 𝐫 ) ⋅ ∇ 𝑝 ( 𝐫) . (6) 

n order to begin with, the first equality of Eq. (6) is obtained by express-
ng Q in terms of integrals over the inlet and outlet faces of the domain
s in Eq. (5) . In the outlet, according to the convention defining positive
ow opposite to the face inward normal, the expression have the oppo-
ite sign. Then, both face pressures are moved under the integral signs
btaining similar expressions. Regarding the Neumann boundary con-
itions on lateral faces, imposing no pressure gradient, both integrals
an be combined in only one over the whole domain boundary 𝜕Ω. Us-
ng the divergence theorem combined with Laplace Eq. (3) yields the
econd equality. This equation has a simple physical interpretation: The
HS corresponds to the total viscous dissipated power, that must coin-
ide with the power spent by external forcing sources set-up to create
he flow. 

So, the effective conductivity may be expressed as, 

 eff = 

1 
( 𝑃 𝑖𝑛 − 𝑃 𝑜𝑢𝑡 ) 2 𝐿 𝐷−2 ∫𝛺 𝑑 

𝐷 𝐫 𝑘 ( 𝐫 ) (∇ 𝑝 ( 𝐫 )) 2 

= 

1 

∇ 𝑝 
2 
Ω,𝑥 𝐿 

𝐷 ∫𝛺 𝑑 
𝐷 𝐫 𝑘 ( 𝐫 ) (∇ 𝑝 ( 𝐫 )) 2 , (7) 

here ∇ 𝑝 Ω,𝑥 = −( 𝑃 𝑖𝑛 − 𝑃 𝑜𝑢𝑡 )∕ 𝐿 is the volume averaged gradient in the
 direction (which is the mean flow direction). The average potential
radient ∇ 𝑝 Ω over the block volume |𝛺| = 𝐿 𝐷 is given by: 

 𝑝 Ω = 

1 |𝛺| ∫Ω 𝑑 𝐷 𝐫 ∇ 𝑝 ( 𝐫 ) = 

1 |𝛺| ∫𝜕Ω 𝑑 ( 𝐷−1) 𝐫 𝑝 ( 𝐫 ) 𝐧 . (8)

n the case of a square or cubic Ω, the retained boundary conditions for
otential p give the proposed equality in the x direction. Eq. (7) relates
he effective conductivity of the whole block K eff to the overall viscous
issipation and the mean forcing potential gradient norm in the imposed
ow direction. It will be the starting point to define a dissipation-based
ffective conductivity estimator in Section 5.1 . 

.1. A variational characterization of K eff

We are now in position to propose an alternative formulation that
roves to be useful for estimating the sensitivity of large scale parame-
ers to variations of local conductivity. This variational characterization
f K eff may be formulated as follows: 

 eff ( 𝑃 𝑖𝑛 − 𝑃 𝑜𝑢𝑡 ) 2 𝐿 𝐷−2 = 𝑄 ( 𝑃 𝑖𝑛 − 𝑃 𝑜𝑢𝑡 ) 

𝐾 eff ∇ 𝑝 
2 
Ω,𝑥 𝐿 

𝐷 = 𝑀𝑖𝑛 𝑝 ( 𝐫) 

{ 

𝛩{ 𝑝 ( 𝐫) } = ∫𝛺 𝑑 
𝐷 𝐫 𝑘 ( 𝐫) (∇ 𝑝 ( 𝐫)) 2 

} 

. (9) 

Here, the potential fields p ( r ) among which the minimization is to
e performed fulfill the boundary conditions at 𝜕𝛺. The justification of
q. (9) is classical: one has to express the extremal conditions: 

𝐫 , 𝛿{ 𝛩{ 𝑝 ( 𝐫 ) } } 
𝛿𝑝 ( 𝐫 ) 

= ∇ ⋅ ( 𝑘 ( 𝐫 ) ∇ 𝑝 ( 𝐫 ) ) = 0 . 
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v  
he operator 
𝛿{ 𝛩{ 𝑝 ( 𝐫) } } 
𝛿𝑝 ( 𝐫) 

is a functional derivative of the functional

{ 𝑝 ( 𝐫) } with respect to p ( r ). A basic presentation of functional differ-
ntiation is given in Appendix A . 

Using thus the particular quadratic form of 𝛩{ 𝑝 ( 𝐫) } , these extremal
onditions give rise to Laplace Eq. (3) that governs the potential. The
nal result may be derived using the same methods than Eq. (6) . 

.2. Functional expansion techniques for the effective conductivity 

Functional techniques combined with the variational formulation
re useful to derive directly second order perturbation expansion of
he effective conductivity and of its associated variance. The starting
oint is to evaluate the sensitivity of effective conductivity with respect
o local perturbations of the local conductivity, as it was derived in
oetinger (2013) and Appendix A . The starting point is to decompose

he local hydraulic conductivity as: 

 ( 𝐫) = ⟨𝑘 ⟩ + 𝛿𝑘 ( 𝐫) . 

he brackets ⟨… ⟩ correspond to ensemble averaging over the conduc-
ivity realizations, to be not confused with volume averaging denoted
y ⋯ . So ⟨𝛿𝑘 ( 𝐫) ⟩ = 0 . One can use the formal equivalent of Taylor series
ormula, up to second order, also valid for functionals: 

 eff = ⟨𝑘 ⟩ + ∫Ω 𝑑 
𝐷 𝐫 

𝛿𝐾 eff

𝛿𝑘 ( 𝐫) 
𝛿𝑘 ( 𝐫) 

+ 

1 
2 ∫Ω 𝑑 

𝐷 𝐫 ∫Ω 𝑑 
𝐷 𝐫 ′

𝛿2 𝐾 eff

𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) 
𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) + … (10) 

he reader must note that in these equations, the functional derivative
ust be evaluated while the nominal value of the conductivity map is a
niform value 𝑘 ( 𝐫) = ⟨𝑘 ⟩ (in usual function Taylor’s expansions, this cor-
esponds to the point at which the derivative is evaluated). Averaging
q. (10) yields a second-order expansion that coincides with LLM con-
ecture up to this limited order. A concise derivation using functional
erivatives is given in Appendix B . 

. Estimation of the variance of the effective conductivity at 

econd order 

In this section, we present expressions of the variance of the effective
onductivity that are obtained in the context of second order perturba-
ion theory. The derivations are given in Appendix C . Finally, closed
xpressions are given for the cases when those expressions are particu-
arized for Gaussian covariance functions. 

For the variance of the effective conductivity given by 

 𝐾 eff
( 𝐿 ) = ⟨𝐾 

2 
eff
⟩ − ⟨𝐾 eff⟩2 = ⟨( 𝐾 eff − ⟨𝐾 eff⟩) 2 ⟩

he following expression can be obtained, Eq. (C.4) : 

 𝐾 eff
( 𝐿 ) = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′ 𝐶 𝑘 ( 𝐫 − 𝐫 ′) . (11)

A mean-field approximation allows to replace each occurrence of K eff

nd k by the corresponding logarithm, Eq. (C.7) , providing the following
xpression that can be expected to have a more extended domain of
alidity for practical applications: 

 log 𝐾 eff ( 𝐿 ) = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′𝐶 log 𝑘 ( 𝐫 − 𝐫 ′) . (12)

he resulting formula is similar to Eq. (11) , replacing the covariance
unction by the log conductivity covariance function. For the special
ase of lognormal media, this is a quite natural transformation. The same
an be done with the simplified formula (C.5) . 

In the case of the Gaussian covariance with 𝐶 𝑘 ( 𝐫) = 𝐶 𝑘 ( 𝑟 = 0) 𝑒 
− 𝑟 

2 

2 𝐼 2 𝑐 

here I is the correlation length, explicit analytical expressions can be
c 
erived for 𝐶 𝐾 eff ( 𝐿 ) from Eq. (11) (see Appenidx C.2 Eq. (C.8) ) 

 𝐾 eff( 𝐿 ) = 𝐶 𝑘 ( 𝑟 = 0) 
( 

𝐼 𝑐 

𝐿 

) 2 𝐷 
[ √

2 𝜋 𝐿 
𝐼 𝑐 

erf 
( √

2 𝐿 
𝐼 𝑐 

) 

+ 2 𝑒 
− 𝐿 

2 

2 𝐼 2 𝑐 − 2 

] 𝐷 
. (13) 

ikewise, using the simplified Eq. (C.5) , one gets after integration
 Eq. (C.9) ): 

 𝐾 eff
( 𝐿 ) ≃ 𝐶 𝑘 ( 𝑟 = 0) 

[ √
2 𝜋
𝐼 𝑐 

𝐿 
erf 
( 

2 
√
2 𝐿 
𝐼 𝑐 

) ] 𝐷 
. (14)

he same calculations can be carried out for 𝐶 log 𝐾 eff ( 𝐿 ) applying the

ogarithmic transformation and give analogous results using 𝐶 log 𝑘 ( 𝑟 = 0)
nd the same spatial dependence. 

. A posteriori multiscale estimators of K eff distributions 

In this section, two estimators providing intermediate scale effective
onductivity distributions are presented. Both are computed using low-
ost post processing of one up scaling closure problem at the largest
vailable scale. These distributions will be compared to reference dis-
ributions determined by computing numerically permeameter effective
onductivity of every coarse block at any scale. The resulting pdf’s will
e compared, as well as the associated log conductivity mean and vari-
nce. For completeness, the latter will be compared with preceding an-
lytical results. 

.1. Dissipation estimator 

.1.1. Definition of the estimator 

We consider now that the upscaling Laplace problem was solved on
 single conductivity realization on the entire block Ω. The subscale
ffective conductivity K diss ( ϑ) on any given cubic (or square) sub-block
f size 𝜆 included in the overall domain Ω can thus be defined as the
elation between the dissipation and the average potential gradient at
he block level by: 

 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 

∫
𝜗 
𝑑 𝐷 𝐫 𝑘 (∇ 𝑝 ) 2 

𝜆𝐷 ∇ 𝑝 
2 
𝜗 

. (15)

t can be observed, using Eq. (7) , that if 𝜗 = Ω, 𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 𝐾 eff × ∇ 𝑝 𝑥 
2 

∇ 𝑝 
2 ≤

 eff. In the case of statistically isotropic k ( r ), if Ω is sufficiently large, the

verage potential gradient ∇ 𝑝 𝑦 perpendicular to the mean flow vanishes,
o the effective conductivity determined by dissipation is equal to the
sual definition: K diss ( ϑ → Ω) ≃ K eff. 

Considering the opposite limit, ϑ → 0, it can be shown, using a Tay-
or expansion of the potential gradient under the integral sign, that

 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 𝑘 ( 𝐫) if and only if ∇ 𝑝 
2 
≃ (∇ 𝑝 ) 2 ≠ 0 . This last condition corre-

ponds to stagnation (no-flow) points. This condition is not surprising,
s it can correspond to both infinite conductivity regions or to screened
egions of vanishing hydraulic conductivity. In both cases, effective con-
uctivity is not defined. Assuming that the set of these points is of van-
shing measure, in most cases the original detailed conductivity map
ust be recovered. This criterion was already introduced and discussed

y Sánchez-Vila et al. (1995) and Bauer et al. (2008) . The proposed
ndicator fulfills two intuitive conditions for both extreme ϑ sizes. In
ppendix D it is shown that the average of the dissipation estimator is in
greement with that derived for K eff for volumes ϑ tending to Ω, and the
tructure of the finite size corrections is given too. In next Section 5.1.2 ,
t is shown up to second order that the variance of K diss ( ϑ) coincides with
xpression (11) by replacing Ω by ϑ as integration domain. This implies
hat the evaluation of the variance 𝐶 log 𝐾 𝑑𝑖𝑠𝑠 ( 𝜆) is obtained by replacing
 by the length of the considered subscale block, 𝜆, in Eq. (12) . 

.1.2. Evaluation of the variance of block dissipation conductivity K diss 

The block equivalent conductivity K diss ( ϑ) is given by Eq. (15) , and its
ariance may be evaluated following the same steps that in Appendix C .
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p  

s

t is defined by ⟨𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 2 ⟩ − ⟨𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩2 = ⟨(𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) − ⟨𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩)2 ⟩. So,
ne gets finally: 

𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 2 ⟩ − ⟨𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩2 = ∫Ω
𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′

𝛿𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 
𝛿𝑘 ( 𝐫) 

𝛿𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 
𝛿𝑘 ( 𝐫 ′) 

⟨𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) ⟩ + …

ote that at present stage, the integration volume remains the whole
olume Ω, it is not restricted to ϑ because K eff( ϑ) depends on the entire
onductivity map that is defined on the support Ω in which the Laplace
quation is solved at the beginning. We have to evaluate the functional

erivative 
𝛿𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 
𝛿𝑘 ( 𝐫) 

. The evaluation cannot be simplified because the

ariational principle that characterizes K eff as defined in Ω is not rele-
ant at any smaller scale. The derivative is given by: 

𝛿𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 
𝛿𝑘 ( 𝐫) 

= 

(∇ 𝑝 0 ( 𝐫)) 2 

𝜆𝐷 ∇ 𝑝 0 
2 𝟏 𝜗 ( 𝐫) + 

2 

𝜆𝐷 ∇ 𝑝 0 
2 2 

1 
𝜆𝐷 [ 

∇ 𝑝 0 
2 

∫
𝜗 

𝑑 𝐷 𝐫 ′𝑘 ∇ 𝑝 0 ( 𝐫 ′) ⋅
𝛿∇ 𝑝 ( 𝐫 ′) 
𝛿𝑘 ( 𝐫) 

− 

1 
𝜆𝐷 ∫𝜗 𝑑 

𝐷 𝐫 ′𝑘 ∇ 𝑝 0 ( 𝐫 ′) 2 ∫
𝜗 

𝑑 𝐷 𝐫 ′′∇ 𝑝 0 ( 𝐫 ′′) ⋅
𝛿∇ 𝑝 ( 𝐫 ′′) 
𝛿𝑘 ( 𝐫) 

] 
. 

n that equation, the first term involving the indicator function of ϑ de-
oted by 1 ϑ( r ) is the remaining of the result that would be provided
sing the variational approach, as shown in Appendix C , Eq. (C.1) . The
rst integral arises from the derivative of ∇ p 2 under the integral sign,
he second corresponds to the functional derivative of 1 

∇ 𝑝 
2 . Both terms

re equal to 0 if 𝜗 = Ω. At lowest order, the spatial dependence of the
onductivity k must be discarded. It appears that the second line involv-
ng twice integration vanishes because ∇ 𝑝 0 ( 𝐫 ′) = 𝐞 𝐱 is constant up to this
rder, so both terms cancel each other. So we obtain the same result that
ould be provided by the variational approach if it was applicable for
lock dissipation: 

𝛿𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 
𝛿𝑘 ( 𝐫) 

= 

(∇ 𝑝 0 )( 𝐫) 2 

𝜆𝐷 ∇ 𝑝 
2 𝟏 𝜗 ( 𝐫) . 

athering all the preceding results, we obtain the following formula for
he variance of the dissipation estimator at scale ϑ: 

( 𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) 2 − ⟨𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩2 ⟩ = 

1 |𝜗 |2 ∫𝜗 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′𝐶 𝑘 ( 𝐫 − 𝐫 ′) . (16)

p to second order, this formula is analogous to the variance in
q. (C.3) of the full up scaled hydraulic conductivity K eff. The corre-
ponding formulation using logarithms is similar at this order. This re-
ult allows to extend the validity of Eqs. (11) and (12) to subscale blocks
. 

.2. Block average conductivity estimator 

Another K eff estimator on subvolume ϑ can be introduced, defined
s 

 𝑎𝑣𝑒 ( 𝜗 ) = 

𝑄 𝑥 

𝜆𝐷−1 ∇ 𝑃 𝑥 

. 

his expression is based on Darcy equation where 𝑄 is the flow
ate and ∇ 𝑃 the potential gradient, both volume-averaged over
omain ϑ of size 𝜆. This estimator was studied by Rubin and
ómez-Hernández (1990) , Sánchez-Vila et al. (1995) , Renard and
e Marsily (1997) , Bauer et al. (2008) . In particular, using a second
rder expansion, Rubin and Gómez-Hernández (1990) computed the
verage and variance of log ( K ave ( ϑ)) as a function of ϑ and the input
ovariance function of the conductivity that correspond to the observed
tatistical parameters observed at scale L . They give the following ex-
ressions: 

log 𝐾 𝑎𝑣𝑒 ( 𝜗 ) ⟩ = log 𝐾 𝑔 + 

(1 − 

1 ) (1 − 𝛼) 𝐶 log 𝑘 ( 𝐫 = 0) 

2 𝐷 
⟨( log 𝐾 𝑎𝑣𝑒 ( 𝜗 ) − ⟨log 𝐾 𝑎𝑣𝑒 ( 𝜗 ) ⟩) 2 ⟩ = 𝛼 𝐶 log 𝑘 ( 𝐫 = 0) 

he normalized variance correction factor 𝛼 given by 

= 

1 |𝜗 |2 ∫𝜗 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′ 𝐶 log 𝑘 ( 𝐫 − 𝐫 ′) 
𝐶 log 𝑘 ( 𝐫 = 0) 

, 

epends only on the geometrical form of the covariance function and
n the averaging volume ϑ size 𝜆. It can be observed that it shares the
ame form than the scale-dependant variance (11) derived before. It can
e noticed that using directly LLM formula for estimating K eff for large
ize 𝜆 using these parameters, Eq. (1) under its second form is recov-
red as terms involving 𝛼 terms cancel. This highlights some internal
onsistency of this estimator. 

In practice, once the potential is solved, the evaluation of K diss ( ϑ) and
 ave ( ϑ) is straightforward and of negligible extra computational cost. For
 given size 𝜆, one obtains a set of ( 𝐿 

𝜆
) 𝐷 , 𝐷 = 2 , 3 values of K diss ( ϑ) and

 ave ( ϑ) that can be studied using statistical tools. This will be the main
opic of next sections. 

. Numerical methodology 

.1. Generation of media samples 

We first compare the formulations over random lognormal media
amples with low and high variance, and then, over binary media sam-
les that have a high contrast of characteristic conductivities. We em-
loyed a fast Fourier transform (FFT) moving average (FFT-MA) method
 Le Ravalec et al., 2000 ) to generate these samples. Lognormal hydraulic
onductivity fields with unitary geometric mean K g were generated.
aussian covariance, with an integral scale 𝐼 = 16Δ defined as the prac-

ical range of the covariance function ( 𝐼 = 

√
3 𝐼 𝑐 ), was used to spatially

orrelate the samples. Fig. 3 (left) shows, as an example, a realization of
 lognormal medium obtained with this procedure. All media samples
enerated have 1024 × 1024 cells, with a linear size of 1024 Δ. In order
o reduce the numerical truncation error when computing the potential
eld, a refining stage of degree 4 was performed ( Romeu and Noetinger,
995; Liu and Wang, 2013 ), resulting in a grid of 4096 × 4096 compu-
ational cells of linear size Δ/4. 

Binary random media is generated as follows: We start by generat-
ng a lognormal one with an arbitrary geometric mean K g and variance
2 
log 𝑘 . Then, this lognormal distribution is binarized using a threshold

alue k t , assigning each cell a characteristic 𝑘 + (high conductivity) or
 

− (low conductivity) value (with 𝑘 + ∕ 𝑘 − = 10 4 ). The value of k t controls
he relative population p of high conductivity cells. Three values of p
ere studied, one at the 2D percolation threshold 𝑝 𝑐 = 0 . 5 , one smaller
 𝑝 = 0 . 4 ) and one greater ( 𝑝 = 0 . 6 ) than p c . At p c , 50% of the realiza-
ions percolate. We used CONNECT3D software ( Pardo-Igúzquiza and
owd, 2003 ) to explicitely verify the percolation condition. 

The spatial correlation function of the resulting binary medium re-
ains gaussian. In turn, the integral scale of the binary medium is
etermined by the integral scale of the original lognormal medium,
ut also by p . To be able to use the former as an input parameter,
e’ve performed an iterative search for each of the values of p stud-

ed. Fig. 3 (right) shows, as an example, a realization of such a binary
edium. 

For each set of parameters, we generated 50 samples in order to
btain an acceptable statistical sampling at largest scale L . 

.2. Potential field calculation 

For the K ave and K diss formulations, it is only required to solve the
otential in Ω once, and then post-processing of the obtained field is
erformed to obtain K eff at any scale 𝜆. For the K perm 

formulation, the
otential must be solved independently for all the sub-domains ϑ under
tudy. 



I. Colecchio, A. Boschan and A.D. Otero et al. Advances in Water Resources 140 (2020) 103594 

Fig. 3. Maps of log ( k ). (left) Lognormal medium obtained from FFTMA. Input data: 𝜎2 log 𝑘 = 7 , 𝐼 = 16Δ. (right) Binary medium. Input data: 𝑝 = 0 . 5 , 𝑘 + ∕ 𝐾 𝑔 = 100 , 
𝑘 − ∕ 𝐾 𝑔 = 0 . 01 . 
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ϑ  
To obtain the potential field we used MODFLOW-2005 1 soft-
are ( Harbaugh, 2005 ) with the corresponding boundary conditions.
his solver uses the finite difference method with a classical 2 𝐷 + 1
oint stencil. Particularly, the Block-Centered Flow package (BCF6) was
sed, and the linear equation system was solved with the Preconditioned

onjugate-Gradient package (PCG) . 

.3. Implementation of the permeameter scheme 

We used classical permeameter boundary conditions in the compu-
ation of the potential fields. In MODFLOW, these boundary conditions
re applied assigning constant potentials (Dirichlet type) to two opposite
ell layers, each of them representing a domain face. A unitary poten-
ial difference ( ΔP ) between them is set. All other faces are constrained
y no-flow boundary conditions (Neumann type) applied to ghost cell
ayers outside the domain. These boundary conditions are applied at 𝜕ϑ
o compute K perm 

defined as 

 𝑝𝑒𝑟𝑚 = 

𝑄 

𝜆Δ𝑃 
, (17)

he integral of the flow, Q , is calculated at the inlet or the outlet face of
he block ϑ with permeameter boundary conditions. For each medium,
 perm 

was computed for the whole set of subscales 𝜆 = 2 𝑛 , with integer

 between 1 and 10, resulting in ( 𝐿 
𝜆
) 2 = 2 2(10− 𝑛 ) values at each subscale.

he same procedure was followed for the other two estimators. 

.4. Implementation of the dissipation scheme 

Based on the resulting potential field computed using MODFLOW
ith permeameter boundary conditions ( Sections 6.2 and 6.3 ) on do-
ain Ω, and the theoretical development presented in Section 5.1 , the
issipation-based block estimator computation is as follows. As the finite
ifference scheme adopted in MODFLOW is cell centered, after solving
he potential field in Ω, both the hydraulic conductivity k i,j and potential
 i,j at each cell center are known. Notations are referred to cell ( i, j ) of
, where ( 𝑖 − 1 , 𝑗) , ( 𝑖 + 1 , 𝑗) , ( 𝑖, 𝑗 − 1) and ( 𝑖, 𝑗 + 1) are the left, right, top
nd bottom neighbouring cells respectively. Using an electrical analogy,
he local cell dissipation can be computed as 

𝑖,𝑗 = ∫
𝜗 𝑖,𝑗 

𝑑 2 𝐫 𝑘 𝑖,𝑗 (∇ 𝑝 ) 2 

= 2 𝑘 𝑖,𝑗 
[
( 𝑃 
𝑖 + 1 2 ,𝑗 

− 𝑃 𝑖,𝑗 ) 2 + ( 𝑃 
𝑖 − 1 2 ,𝑗 

− 𝑃 𝑖,𝑗 ) 2 

+ ( 𝑃 
𝑖,𝑗+ 1 2 

− 𝑃 𝑖,𝑗 ) 2 + ( 𝑃 
𝑖,𝑗− 1 2 

− 𝑃 𝑖,𝑗 ) 2 
]

(18) 

The factor 2 k i,j corresponds to the conductivity of the half bond be-
ween the center and any face of ϑi,j . The potential subscript with minus
1 https://water.usgs.gov/ogw/modflow/mf2005.html 

t  

w  
r plus halves refer to cell face potentials computed invoking the equal-
ty of flux at both sides of the face. For example the potential on the left
ace of cell ( i, j ) is given by: 

 

𝑖 − 1 2 ,𝑗 
= 

(
𝑘 𝑖,𝑗 𝑃 𝑖,𝑗 + 𝑘 𝑖 −1 ,𝑗 𝑃 𝑖 −1 ,𝑗 

)(
𝑘 𝑖,𝑗 + 𝑘 𝑖 −1 ,𝑗 

) . 

he other cell face potentials are defined analogously. Using equivalent
quations to eliminate face potentials in Eq. (18) , we get: 

𝑖,𝑗 = 

1 
2 𝑘 𝑖,𝑗 

[ ( 

𝑇 
𝑖 + 1 2 ,𝑗 

( 𝑃 𝑖 +1 ,𝑗 − 𝑃 𝑖,𝑗 ) 
) 2 

+ 

( 

𝑇 
𝑖 − 1 2 ,𝑗 

( 𝑃 𝑖 −1 ,𝑗 − 𝑃 𝑖,𝑗 ) 
) 2 

+ 

( 

𝑇 
𝑖,𝑗+ 1 2 

( 𝑃 𝑖,𝑗+1 − 𝑃 𝑖,𝑗 ) 
) 2 

+ 

( 

𝑇 
𝑖,𝑗− 1 2 

( 𝑃 𝑖,𝑗−1 − 𝑃 𝑖,𝑗 ) 
) 2 
] 
. 

he coefficients T .,. are the usual intercell harmonic averages given by

 

𝑖 + 1 2 ,𝑗 
= 

2 𝑘 𝑖 +1 ,𝑗 𝑘 𝑖,𝑗 
𝑘 𝑖 +1 ,𝑗 + 𝑘 𝑖,𝑗 

and 𝑇 
𝑖,𝑗+ 1 2 

= 

2 𝑘 𝑖,𝑗+1 𝑘 𝑖,𝑗 
𝑘 𝑖,𝑗+1 + 𝑘 𝑖,𝑗 

. 

Ohm’s law for dissipation can be recognized through the squares of
he fluxes flowing through the faces. The cell face potentials are also
sed to compute the cell potential gradient as 

 𝑃 𝑇 
𝑖,𝑗 

= 

[ 
𝑃 
𝑖 + 1 2 ,𝑗 

− 𝑃 
𝑖 − 1 2 ,𝑗 

Δ
, 

𝑃 
𝑖,𝑗+ 1 2 

− 𝑃 
𝑖,𝑗− 1 2 

Δ

] 
. 

hus, the averaged potential gradient of the block is 

 𝑃 = 

∑
𝑖,𝑗 ∇ 𝑃 𝑖,𝑗 

𝑛 𝑖 𝑛 𝑗 
, 

ith n i , n j the number of cells in each direction inside the block. In every
ase, the sum runs over all the fine grid-blocks included in ϑ. Finally, the
lock dissipation-based estimator of Eq. (15) for block ϑ is computed as

 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 

∑
𝑖,𝑗 𝜖𝑖,𝑗 

𝜆2 ∇ 𝑃 
2 . (19)

ig. 4 presents the resulting dissipation maps for lognormal and binary
edia samples. A strong localization (channeling) effect may be noticed

lose to percolation threshold for the binary case. 

.5. Implementation of the block average conductivity scheme 

Based on the computation of the potential field in Ω, the second K eff

stimator can be defined in ϑ as: 

 𝑎𝑣𝑒 = 

𝑄 𝑥 

𝜆∇ 𝑃 𝑥 

. (20)

his expression is based on a large-scale Darcy equation where 𝑄 is the
ow rate and ∇ 𝑃 the potential gradient, both averaged over the domain
of size 𝜆. With the proper boundary conditions it is possible to recover

he full hydraulic conductivity tensor ( Bauer et al., 2008 ). In this study,
e only considered the direction of the imposed potential difference ΔP .

https://water.usgs.gov/ogw/modflow/mf2005.html
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Fig. 4. Local dissipation ( 𝜖) maps: (left) lognormal medium with 𝜎2 log 𝑘 = 7 and (right) binary medium with 𝑝 = 0 . 5 . 

Fig. 5. Analytical and numerical results for Gaussian covariance media. (Left) 𝜎2 
𝐾 𝑒𝑓𝑓 

compared against Eqs. (13) and (14) . (Right) 𝜎2 log 𝐾 𝑒𝑓𝑓 
compared against 

Eqs. (13) and (14) using the mean-field approximation. (-.-) Numerical; ( —) Analytical; ( —) Simplified analytical. Input variance: ( ∘) 𝜎2 log 𝑘 = 0 . 1 , (x) 𝜎2 log 𝑘 = 7 . 

Table 1 

Simulation parameter names, definitions and values. 

Definition Symbol Values 

Lognormal Binary 

Size of the full domain L 1024 Δ
Covariance function C ( r ) Gaussian 

Integral scale I 16 Δ 8 Δ
Fine grid geometric mean K g [ m / day ] K g 1 

Fine grid variance of log ( K ) 𝐶 log 𝑘 ( 𝑟 = 0) = 𝜎2 log 𝑘 0.1; 7 

Characteristic conductivity [ m / day ] 𝑘 + ; 𝑘 − 100; 0.01 

Proportion of cells with 𝑘 + p 0.4; 0.5; 0.6 
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. Results 

We begin this section by comparing, as a form of validation, the out-
omes of the analytical developments of Section 4 , for lognormal media,
ith the corresponding numerical results using the well-known K perm 

es-
imator. Then, for both type of media, we study the scale-dependence
f the pdf of the three proposed estimators, to later focus on the first
wo gaussian moments i.e. mean and variance. For this latter case, a
omparison with the mean-field analytical variance of K eff, Eq. (13) , is
erformed. The common parameters and values used in the simulations
re presented in Table 1 . 

.1. Comparison of the different analytical expressions for 𝐶 𝐾 eff ( 𝜆) with 

umerical results 

Fig. 5 shows the variance of K eff given by Eqs. (13) and (14) , and their
quivalent expressions within the mean-field approximation, compared
ith the K perm 

estimator, as a function of the coarsening scale 𝜆, that
aries between fine grid scale Δ and L . A low ( 𝜎2 log 𝑘 = 0 . 1 ) and a high

 𝜎2 log 𝑘 = 7 ) fine grid variance are used as extreme cases. 

The analytical results are in good agreement with the numerical sim-
lations for 𝜎2 log 𝑘 = 0 . 1 when using the expressions based on the conduc-

ivity variance 𝜎2 
𝐾 eff

( Eqs. (13) and (14) ). The difference increases for the

ase of 𝜎2 log 𝑘 = 7 , specially for scales equal or greater than the integral

cale, defined as the practical range of the covariance function. The esti-
ation of the variance of the logarithm, 𝜎2 log 𝐾 eff

( Appendix C.1 ) provides

 better agreement with the numerical results even for 𝜎2 log 𝑘 = 7 . In this

ase, the analytical equations correctly capture the tendency as the scale
ncreases, with small discrepancy from the numerical results beyond the
ntegral scale. In both cases, the simplified formulas ( Eq. (14) ) coincide
o a large extent with the complete ones except at the scales close to
he integral scale, where a small difference appears. In view of these
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Fig. 6. Pdf’s of log ( K eff). Input data: 𝜎2 log 𝑘 = 7 , I = 16 Δ. (Left) For the three estimators at 𝜆 = 32Δ. (Right) Pdf of K diss for 𝜆 = 4, 8, 16, 32 and 64 Δ. 

Fig. 7. K eff as a function of 𝜆, for the three estimators,for lognormal media: (left) geometric mean and (right) rescaled variance 𝜆
2 

𝐼 2 
𝐶 log 𝐾 eff . Input variance: (....) 

𝜎2 log 𝑘 = 0 . 1 , (–) 𝜎2 log 𝑘 = 7 . Upscaling method: (x) K perm , ( ∘) K diss , ( □) K ave . The vertical line indicates the integral scale. ( —) Analytical variance Eq. (13) using the 

mean-field approximation. 
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bservations, comparison against analytical results in the next sections
ill be only carried out with respect to Eq. (13) using the mean-field
pproximation. 

.2. Lognormal media 

.2.1. Probability density function of the different estimators 

Pdf’s of K diss , K ave and K perm 

are plotted in Fig. 6 (left) for 𝜎2 log 𝑘 = 7 .
lthough K diss and K ave present a sharper pdf, they are rather similar.
he dependence of the pdf of K diss with the coarsening scale 𝜆 is shown

n Fig. 6 (right). It can be observed that the pdf remain Gaussian at
ll scales. As a Gaussian pdf is fully described by its mean and vari-
nce, in the following subsection, we focus our attention on these two
oments. 

.2.2. Scale dependence of the mean and variance of K eff

Fig. 7 compares the values of the geometric mean of K eff, indicated

y ⟨⟨… ⟩⟩ (left), and the variance 𝜎2 log 𝐾 eff
scaled by ( 𝜆

𝐼 
) 2 (see Appendix C )

right) for the three estimators. As 𝜆 tends to Δ, ⟨⟨K eff⟩⟩ approaches to the
ne scale mean K g for both variances. For 𝜎2 log 𝑘 = 0 . 1 , the three formu-

ations yield very similar results, while for 𝜎2 log 𝑘 = 7 some discrepancies

re observed. Moreover, for 𝜆 close to I , a depart from the theoretical
alue (of upto 12%) is observed for K diss . We recall that, as developed
n Section 5.1.1 , if 𝜗 = Ω, the potential gradients transverse to the mean
ow vanish, due to the boundary conditions applied at that scale in all
ases, but, if ϑ < Ω, these gradients may exist and be non negligible.
lso, they are stronger as the heterogeneity increases, explaining the
lump in K for 𝜆 close to I . 
diss 
The variances of K eff were evaluated analytically using the mean-
eld approximation of Eq. (13) . In Fig. 7 (right), the variances of the
hree estimators show an excellent agreement with the analytical re-
ults for 𝜎2 log 𝑘 = 0 . 1 , while, for 𝜎2 log 𝑘 = 7 , a slight difference for 𝜆 > I is

bserved for the three estimators, probably due to discretization effects
 Romeu and Noetinger, 1995 ). 

.3. Binary media 

.3.1. Probability density functions of the K eff estimators 

In binary media, the lower limiting case is when the upscaling scale 𝜆
ends to the fine grid scale Δ, with only two possible conductivity values:
 

+ with probability p , and 𝑘 − with probability (1 − 𝑝 ) . Consequently, the
df of the effective conductivity tends to a two-peaked distribution with
elative heights given by p and (1 − 𝑝 ) , and its mean is similar to that
f the original medium at the fine grid scale. On the other hand, the
pper limit correspond to the upscaling scale reaching the domain scale
 . In this case, the pdf of the effective conductivity looks more like a
nimodal distribution with its mean approaching 𝑘 + when p > p c , and 𝑘 − 

hen p < p c . At intermediate scales, a transition between both extreme
ehaviors occurs. Pdf’s of K diss , K ave and K perm 

are plotted in Fig. 8 in
rder to compare them with the expected behavior. Three situations,
ith p smaller, close to and greater than 𝑝 𝑐 = 0 . 5 (for which percolation

ransition occurs), are shown in this figure. 
In the left column of the figure, the three methods are compared

or 𝜆 = 32Δ. At this intermediate scale different behaviors are observed
epending on the method. The pdf’s of the three estimators considered
ere exhibit some differences: the K perm 

estimator presents more peaked
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Fig. 8. Pdf’s of the effective conductivity log ( K eff) resulting from the three studied estimators. Input data: relative population 𝑝 = 0 . 4 , 𝑝 = 0 . 5 and 𝑝 = 0 . 6 (top to 

bottom). (Left) Results obtained with the three methods for 𝜆 = 32Δ. (Right) K diss results for three block sizes 𝜆 = 4 , 32, and 256 Δ. 
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istributions with two clearly separated modes while those of global
ethods, K diss and K ave , are relatively more homogeneous, with a con-

inuous variation between the peaks. Also, the values of conductivity
orresponding to the facies that does not percolate are only retained in
he case of K perm 

, while K diss and K ave smooth them out. This is a di-
ect effect of the permeameter boundary conditions that are imposed
or each sub domain ϑ when computing K perm 

. This renders percolation
n ϑmuch more critical for K eff. On the other hand, analyzing the behav-
or when small, middle and large scales are adopted for 𝜆, the expected
ehavior is recovered. K diss converges to an unimodal distribution as
increases, faster as p departs from p c , as it was observed in a previ-

us study for K perm 

( Boschan and Noetinger, 2012 ). In addition, as p
eparts from p c , for a given 𝜆, the distributions become narrower. This
mplies that the convergence to a representative mean is slower near
ercolation. 
c  
.3.2. Scale dependence of the mean and variance of K eff

In the binary case, as it is clearly seen in Fig. 8 , the pdf’s of K eff

re far from being unimodal, and then, the mean and variance be-
ome less representative of the pdf, compared with the lognormal case
cf. Section 7.2.1 ). For example, one may note that, in panel C of Fig. 8 ,
he mean would not be particularly representative. However, previ-
us studies analyzed the mean and variance much more frequently
han the complete pdf, so we consider interesting to present them for
omparison. 

Fig. 9 shows the variation of geometric mean of K eff (left), and of the
ariance 𝜎2 log 𝐾 eff

(right), for the three estimators, as a function of 𝜆 for

 = 0 . 4 , 𝑝 = 0 . 5 and 𝑝 = 0 . 6 . The values of ⟨⟨K eff⟩⟩ coincide as 𝜆 tends to
he limiting Δ or L , for all the values of p . The behavior at both limits of
he range corresponds to which is expected for a representative effective
onductivity. Furthermore, the behavior far from those extreme values
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Fig. 9. Dependence of the three estimators of K eff with the scale in binary media: (left) geometric mean and (right) rescaled variance 𝜆
2 

𝐼 2 
𝐶 log 𝐾 eff . Input data: (....) 

𝑝 = 0 . 4 , (–) 𝑝 = 0 . 5 , (-.-) 𝑝 = 0 . 6 . Upscaling method: (x) K perm , ( ∘) K diss , ( □) K ave . 

Fig. 10. Discrepancy between the geometric mean of K diss and that of K ave . (Left) Results for lognormal media, Section 7.2.2 . (Right) Results for binary media, 

Section 7.3.2 . ( ∣) Integral scale. 
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s strongly dependent on the particular estimator. As observed in Fig. 8 ,
he two peaks in the K perm 

histogram remained clearly identifiable at
arger 𝜆 values, in opposition to what happened in the cases of K diss or
 ave . The outcome is that if p is far from p c , K perm 

converges more slowly
han K diss or K ave to the asymptotic value of 𝜆 = 𝐿 . This is consistent with
he faster homogenization shown by the global estimators in the pdf’s of
ection 7.3.1 . Comparing K diss and K ave , the former shows a slight bias
o lower ⟨⟨K eff⟩⟩ values. 

The variance 𝜎2 log 𝐾 eff
computed using the three formulations also

oincides as 𝜆 tends to Δ or L . At intermediate scales, K perm 

always
ields the highest 𝜎2 log 𝐾 eff

, in agreement with the findings shown in

ection 7.3.1 , where it was shown that the pdf remained bimodal for
 greater 𝜆 than for the other two methods. Note that, in the non per-
olating case ( 𝑝 = 0 . 4 ), K diss produces lower variances than K ave , while
he opposite happens for the percolating case ( 𝑝 = 0 . 6 ), and, at 𝑝 𝑐 = 0 . 5 ,
oth estimators yield similar values of 𝜎2 log 𝐾 eff

. 

. Summary, discussion and perspectives 

After introducing an efficient K eff estimator based on energy dissi-
ation, we revisited numerically and analytically three of the most im-
ortant upscaling formulations, analyzing the scale dependence of the
esulting K eff distributions. 

For 2D lognormal media, K eff distributions remain lognormal at in-
ermediate coarsening scales for all the formulations, a result that could
e theoretically related to the LLM formula ( Landau and Lifshitz, 1960;
atheron, 1967 ). The numerical results for ⟨⟨K eff⟩⟩ and 𝜎2 log 𝐾 eff

are in

greement with the analytical ones. This is notable for intermediate
oarsening scales, having in mind that these last results are not exact.
n particular, the asymptotic behavior of 𝜎2 log 𝐾 eff

for 𝜆 > I , varying as

1/ 𝜆) 2 , is reminiscent to a central limit theorem. 
In the binary case, for p far from p c , the pdf of K eff evolves from a

imodal to a unimodal distribution, with representative mean and vari-
nce. The mean and variance of the three estimators converge to the
ame asymptotic K eff values for 𝑝 = 0 . 4 or 0.6. It can be observed that
he latter obeys the scaling law with 1/ 𝜆2 in that case. Close to percola-
ion threshold p c , the intermediate-scale K eff distributions do not exhibit
onvergence to an asymptotic stable distribution. The ⟨⟨K eff⟩⟩ remains
lose to the fine grid geometric mean K g . This may be explained by the
act that in 2D, at 0 . 5 = 𝑝 𝑐 , the analytical result of Matheron (1967) can
e applied, yielding the geometric average in that very specific case.
ooking more carefully to Fig. 9 , for 𝑝 = 𝑝 𝑐 , 𝜎

2 
log 𝐾 eff

does not follow the

caling law in 1/ 𝜆2 . This should be related to the absence of a repre-
entative elementary volume ( Berkowitz and Balberg, 1993; Hunt et al.,
014; Stauffer and Aharony, 2014 ). Quantification of such effects re-
ains to be studied, and K eff estimators that comply to finite size scaling

rguments might improve the existing description. 
The computation of K eff through K ave and K diss is much more efficient

han using K perm 

, because, in this case, the potential is solved once for Ω,
nd then by post-treating this solution, K eff can be obtained at all scales
f a multiscale description is required, while providing similar results.
sing K perm 

involves solving the potential independently for each scale,
ue to the strong influence of the boundary conditions imposed at 𝜕ϑ. 

Now comparing K ave and K diss , we illustrate the degree of discrep-
ncy between these two estimators as a function of the coarsening scale,
howing in Fig. 10 the ratio between the geometric mean of K ave and that
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f K diss . It can be observed that the greater discrepancy occurs, both for
ognormal and binary media, for 𝜆 ≈ I , where I is the practical range
f the covariance function as measured in both types of media samples,
iving a characteristic lengthscale for heterogeneity. Note that K diss (see
ection 5.1 ) is sensible to transverse potential gradients, while K ave isn’t,
ecause it assumes a colinearity between potential gradient and flow.
hese transverse potential gradients vanish at 𝜆 = Δ and at 𝜆 = 𝐿, while
hey have a maximum in-between, at a critical lengthscale, despite that
edia samples are statistically isotropic. The degree of discrepancy is

hen probably driven by the scale dependence of these transverse po-
ential gradients. 

Except for the lognormal case of 𝜎2 log 𝑘 = 0 . 1 , K diss is smaller than K ave 

p to 12% in the lognormal case of 𝜎2 log 𝑘 = 7 , and up to 80% in the

inary case. The bias of K diss towards lower values was also observed in
he pdf’s shown in the Sections 7.2.1 and 7.3.1 . 

The 3D generalization of this work is currently under development.
n particular, the appearance of an attractive conductivity distribution
or the different formulations, playing in 3D an analogous role to the
ognormal distribution in 2D, is of central interest. Moreover, for bi-
ary media, it is highly interesting to assess the slower convergence to
n homogeneous K eff distribution close to the percolation transition in
D media in the context of the different formulations. More realistic or
omplex distributions such as non Gaussian or power-law ( Panzeri et al.,
016; Riva et al., 2017; Guadagnini et al., 2018 ) will be addressed in
uture work. A major practical issue regarding non-homogeneous mate-
ials is to find some self-contained estimation of the REV size allowing to
etermine, for a given case, if the REV size is reached. That will help to
nd the optimal meshing size, and to quantify uncertainty propagation.
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ppendix A. Functional differentiation 

Functional differentiation is a generalization of calculus to function-
ls, i.e., functions having a function as argument. Our presentation is
ntuitive. Let F ({ k }) be a functional that depends on the whole set of
alues of k which is an arbitrary function of position 𝐫 ∈ 𝛀. The nota-
ion {…} recalls that F is a functional. Examples of functional can be
he value of field k at a given location r 0 : 𝐹 0 ({ 𝑘 }) = 𝑘 ( 𝐫 0 ) , the weighted
verage 𝐹 < …> 𝑓 ({ 𝑘 }) = 

1 |𝑉 | ∫𝑉 𝑑 𝐷 𝐫 𝑓 ( 𝐫) 𝑘 ( 𝐫) in which f ( r ) is a fixed func-

ion that does not depend on k . The functional derivative of a functional
 ({ k }) is defined by the following equation: 

𝑖𝑚 𝜖→0 
𝐹 ({ 𝑘 + 𝜖𝛿𝑘 }) − 𝐹 ({ 𝑘 }) 

𝜖
= ∫𝑉 𝑑 

𝐷 𝐫 𝛿𝐹 
𝛿𝑘 ( 𝐫) 

𝛿𝑘 ( 𝐫) 

ere, 𝛿k is an arbitrary perturbation. The functional derivative has a
upplementary spatial argument (that corresponds in the case of par-
ial derivatives to the choice of the variable with respect to which the
erivative is performed). In the examples of F 0 ({ k }) and 𝐹 < …> 𝑓 ({ 𝑘 }) ,
ne has 

𝛿𝐹 0 
𝛿𝑘 ( 𝐫) 

= 𝛿(( 𝐫 − 𝐫 0 ) 

𝛿𝐹 < …> 𝑓 

𝛿𝑘 ( 𝐫) 
= 

𝑓 ( 𝐫) |𝑉 |
t gives the sensibility of the variation of F with respect to a local vari-
tion of its argument k at position r . N th order functional derivatives
an be defined, as well as a Taylor formula, replacing summations by
ntegrations. 

If f ( x ) is a standard differentiable real function, one has the chain
erivative formula: 

𝛿𝑓 ( 𝐹 ) 
𝛿𝑘 ( 𝐫) 

= 

𝑑𝑓 

𝑑𝑥 
( 𝐹 ) 𝛿𝐹 

𝛿𝑘 ( 𝐫) 

f p ( r ) obeys a Laplace equation such as 

 ⋅ ( 𝑘 ( 𝐫 ) ∇ 𝑝 ( 𝐫 ) ) = 0 , 

utting 𝑘 ( 𝐫) = 𝑘 + 𝛿𝑘 ( 𝐫) , one obtains: 

 ⋅ [ ( 𝑘 + 𝛿𝑘 ( 𝐫 )) (∇ 𝑝 ( 𝐫 ) + ∇ 𝛿𝑝 ( 𝐫) ) ] = 0 , 

enoting by 𝛿p ( r ) the first order variation of potential p ( r ) with respect
o k ( r ), one obtains that 𝛿p ( r ) obeys the following equation, valid at first
rder: 

 ⋅ ( 𝑘 ∇ 𝛿𝑝 ( 𝐫) ) = −∇ ⋅ [ 𝛿𝑘 ( 𝐫 ) ∇ 𝑝 ( 𝐫 ) ] (A.1)

s the unperturbed potential p ( r ) fulfills the boundary conditions at the
omain boundary, 𝛿𝑝 ( 𝐫) = 0 on Dirichlet boundaries, and same condi-
ions for the normal flux at the Neumann boundaries. This equation has
he formal solution: 

𝑝 ( 𝐫) = − ∫𝑉 𝑑 
𝐷 𝐫 ′ 𝐺 𝑘 ( 𝐫, 𝐫 ′) ∇ ⋅

[
𝛿𝑘 ( 𝐫 ′) ∇ 𝑝 0 ( 𝐫 ′) 

]
. (A.2)

ere, G k ( r, r ′ ) is the Green’s function of the Laplace operator that obeys
he following equations, to be supplemented by consistent boundary
onditions: 

 ⋅
(
𝑘 ∇ 𝐺 𝑘 ( 𝐫 , 𝐫 ′) 

)
= 𝛿( 𝐫 − 𝐫 ′) 

 𝑘 ( 𝐫 𝐱 = 0 , 1 , 𝐫 ′) = 0 , 𝜕 𝑦 𝐺 𝑘 ( 𝐫 𝐲 = 0 , 1 , 𝐫 ′) = 0 

o one gets finally after one integration by parts: 

𝛿𝑝 ( 𝐫) 
𝛿𝑘 ( 𝐫 ′) 

= ∇ 𝐫 ′𝐺 𝑘 ( 𝐫 , 𝐫 ′) ⋅ ∇ 𝑝 0 ( 𝐫 ′) (A.3)

his result may recovered directly, applying the operator 
𝛿⋅

𝛿𝑘 ( 𝐫 ′) 
at both

ides of Eq. (3) , providing: 

 ⋅
( 

𝑘 ∇ 

𝛿𝑝 ( 𝐫) 
𝛿𝑘 ( 𝐫 ′) 

) 

= −∇ ⋅ [ 𝛿(( 𝐫 ′ − 𝐫 ) ∇ 𝑝 ( 𝐫 )] , 

hich is equivalent to Eq. (A.3) . Note that the base conductivity field k
ay also depend on position, or be equal to ⟨k ⟩, the choice depends on

he application at hand. 

ppendix B. Second order estimation of the average effective 

onductivity 

In order to illustrate the functional formalism, we carry out with
his tool the classical second order expansion of the effective conduc-
ivity ( Dagan, 1989 ). The Taylor expansion Eq. (10) , gives directly a
econd order series expansion that will provide the desired expansion
fter averaging: 

𝐾 eff⟩ = ⟨𝑘 ⟩ + 

1 
2 ∫ 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′

𝛿2 𝐾 eff

𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) 
𝐶 𝑘 ( 𝐫 ′ − 𝐫) . (B.1)
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he main task is to evaluate explicitly the second order func-
ional derivative that may be simplified in the following form, using
q. (C.1) differentiated once more time: 

𝛿2 𝐾 eff

𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) 
= 

1 |Ω|2∇ 𝑝 0 ( 𝐫 ) . ∇ 

𝛿𝑝 ( 𝐫 ) 
𝛿𝑘 ( 𝐫 ′) 

n that equation, p 0 ( r ) is the non-perturbed potential. The derivative
𝛿𝑝 ( 𝐫) 
𝛿𝑘 ( 𝐫 ′) 

is given by Eq. (A.2) . So, we get after substitution: 

𝛿𝑝 ( 𝐫) 
𝛿𝑘 ( 𝐫 ′) 

= 

1 ⟨𝑘 ⟩∇ 𝐺( 𝐫 , 𝐫 ′) ⋅ ∇ 𝑝 0 ( 𝐫 ′) . (B.2)

n that expression, G ( r, r ′ ) is the Green’s function of Laplace operator
 

2 , this explains the factor 1 ⟨𝑘 ⟩ . Note that due to the boundary condi-

ions that break full translational invariance of the system, this Green’s
unction does not depend only on the argument ( 𝐫 − 𝐫 ′) . Gathering these
esults in Eq. (B.1) , and using the fact that ∇ 𝑝 0 ( 𝐫) = 𝑒 𝑥 , one obtains: 

𝐾 eff⟩ = ⟨𝑘 ⟩ − 

1 ⟨𝑘 ⟩|Ω| ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′ ∇ 𝑝 0 ( 𝐫 ) . ∇ 

𝛿𝑝 ( 𝐫 ) 
𝛿𝑘 ( 𝐫 ′) 

𝐶 𝑘 ( 𝐫 ′ − 𝐫 ) 

= ⟨𝑘 ⟩ − 

1 ⟨𝑘 ⟩|Ω| ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′ 𝜕 𝑟 𝑥 𝜕 𝑟 ′𝑥 𝐺( 𝐫 , 𝐫 ′) 𝐶 𝑘 ( 𝐫 ′ − 𝐫 ) (B.3) 

ssuming that | Ω| 1/ D is large compared with the integral scale I , one
an replace G ( r, r ′ ) by the free space Green’s function 𝐺( 𝐫 − 𝐫 ′) . This is
quivalent to estimate the Green’s function assuming that the boundary
onditions are rejected at infinity. 

Using the correlation function isotropy, the integral can be simplified
sing a classical trace argument, yielding: 

𝐾 eff⟩ = ⟨𝑘 ⟩ − 

1 ⟨𝑘 ⟩ 1 
𝐷 

𝐶 𝑘 ( 𝐫 = 0) . 

p to the same order of approximation, this formula can be rewritten
n a more usual form as: 

𝐾 eff⟩ = exp ⟨log ( 𝑘 ) ⟩𝑒 ( 1 2 − 1 𝐷 ) 𝐶 log 𝑘 ( 𝐫=0) . 
or log normal media, this formula is equivalent to the LLM conjecture,
q. (1) . The second order expansion is thus recovered for large averaging
olumes, with a quite concise calculation. 

ppendix C. Second order estimation of the variance of the 

ffective conductivity 

The variance of the effective conductivity is given by 

 𝐾 eff
( 𝐿 ) = ⟨𝐾 

2 
eff
⟩ − ⟨𝐾 eff⟩2 = ⟨( 𝐾 eff − ⟨𝐾 eff⟩) 2 ⟩. 

sing the Taylor expansion Eq. (10) , and keeping only second order
erms, one gets dropping the averaging symbol ⟨⋅⋅⋅⟩ under the inte-
ral sign, a procedure that is straightforward within the stochastic con-
ext ( Dagan, 1989; Gelhar, 1993; Hristopulos, 2020 ). The procedure
ould be different using a volume averaging technique involving bound-
ry of averaging-volume corrections, Hassanizadeh and Gray (1979) ,
hitaker (2013) : 

 𝐾 eff
( 𝐿 ) = ∫Ω 𝑑 

𝐷 𝐫 𝑑 𝐷 𝐫 ′
⟨ 

𝛿𝐾 eff

𝛿𝑘 ( 𝐫) 
𝛿𝐾 eff

𝛿𝑘 ( 𝐫 ′) 
𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) 

⟩ 

+ …

The quantity 
𝛿𝐾 eff

𝛿𝑘 ( 𝐫) 
can be written under a simple form: 

𝛿𝐾 eff

𝛿𝑘 ( 𝐫) 
∇ 𝑝 

2 
Ω,𝑥 |Ω| = ∇ 𝑝 ( 𝐫) 2 . (C.1)

erivation of Eq. (C.1) is straightforward using the variational charac-
erization Eq. (9) that can be differentiated directly with respect to 𝛿k ( r )
gnoring the implicit dependence of ∇ p ( r ) 2 with 𝛿k ( r ) that is known to
anish thanks to the variational characterization. This Eq. (C.1) relates
he influence of a local hydraulic conductivity change on K eff to the local
otential gradient. This result was already derived using similar meth-
ds by Jacquard (1965) and generalized to obtain shape derivatives of
ffective conductivity with respect to geometrical shape of inclusions by
oetinger (2013) . One can remark that in a location where ∇ 𝑝 ( 𝐫) = 0 ,

he local conductivity has no influence at all on the large scale conduc-
ivity: it is screened by other patterns that imply that there is no flow at
his location. This is a rather intuitive result. 

Thus using Eq. (C.1) , we obtain: 

 𝐾 eff
( 𝐿 ) = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′
⟨ 

∇ 𝑝 ( 𝐫) 2 

∇ 𝑝 
2 
Ω,𝑥 

∇ 𝑝 ( 𝐫 ′) 2 

∇ 𝑝 
2 
Ω,𝑥 

𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) 
⟩ 

+ … (C.2)

As we are seeking a second order expansion of the variance of effec-

ive conductivity, the local quantity ∇ 𝑝 ( 𝐫) 
2 

∇ 𝑝 
2 
Ω,𝑥 

(resp. ∇ 𝑝 ( 𝐫 
′) 2 

∇ 𝑝 
2 
Ω,𝑥 

) may be replaced

y 1, getting: 

 𝐾 eff
( 𝐿 ) = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′ ⟨𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) ⟩. (C.3)

After averaging, introducing the pair correlation function 𝐶 𝑘 ( 𝐫 −
 

′) = ⟨𝛿𝑘 ( 𝐫) 𝛿𝑘 ( 𝐫 ′) ⟩ of the hydraulic conductivity fluctuations, we get
 formula already obtained by Rubin and Gómez-Hernández (1990) ,
ánchez-Vila et al. (1995) , Wen and Gómez-Hernández (1996) : 

 𝐾 eff
( 𝐿 ) = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′ 𝐶 𝑘 ( 𝐫 − 𝐫 ′) . (C.4)

ote that for small averaging volume size L compared to the integral
cale I , this formula gives by direct inspection 𝐶 𝐾 eff ( 𝐿 ) = 𝐶 𝑘 ( 𝑟 = 0) . On

he other limit, assuming that the unit volume size is very large com-
ared to the underlying integral scale, one gets the asymptotic behavior:

 𝐾 eff
( 𝐿 ) ≈ 1 |Ω| ∫Ω 𝑑 𝐷 𝐫 𝐶 𝑘 ( 𝐫) . (C.5)

or large L , one has the scaling : 

𝐿 𝐷 

𝐼 𝐷 
𝐶 𝐾 eff

( 𝐿 ) ≈ ∫Ω 𝑑 
𝐷 𝐫 

𝐶 𝑘 ( 𝐫) 
𝐼 𝐷 

. (C.6)

he factor L D / I D corresponds to the number of independent statistical
nits that belong to volume Ω. This scaling corresponds thus to a cen-
ral limit theorem characterizing the emergence of a deterministic large
cale effective conductivity. In other words, the system exhibits self av-
raging properties. Eqs. (C.4) and (C.5) are solved for the particular case
f the Gaussian covariance in C.2 . 

1. Improved estimation of the variance, mean-field approximation 

The preceding development is limited to small variances. In order to
nd an improved approximation, one can use Eq. (C.2) written on an
quivalent form: 

⟨𝐾 

2 
eff
⟩ − ⟨𝐾 eff⟩2 = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′⟨ 

𝑘 ( 𝐫 )∇ 𝑝 ( 𝐫 ) 2 

∇ 𝑝 
2 
Ω,𝑥 

𝑘 ( 𝐫 ′)∇ 𝑝 ( 𝐫 ′) 2 

∇ 𝑝 
2 
Ω,𝑥 

𝛿𝑘 ( 𝐫) 
𝑘 ( 𝐫) 

𝛿𝑘 ( 𝐫 ′) 
𝑘 ( 𝐫 ′) 

] 

⟩ 

+ …

ow, one can replace k ( r ) ∇ p ( r ) 2 and k ( r ′ ) ∇ p ( r ′ ) 2 by their common av-

rage value ⟨𝐾 eff⟩∇ 𝑝 
2 
Ω,𝑥 . So one gets: 

⟨𝐾 

2 
eff
⟩ − ⟨𝐾 eff⟩2 ⟨𝐾 eff⟩2 = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′⟨ 𝛿𝑘 ( 𝐫) 𝑘 ( 𝐫) 
𝛿𝑘 ( 𝐫 ′) 
𝑘 ( 𝐫 ′) 

⟩ + …

p to this order of approximation, the result can be identified with the
ariance of log ( K eff) and the equation can be rewritten as: 

 log 𝐾 eff ( 𝐿 ) = ⟨( log ( 𝐾 eff)) 2 − ⟨log ( 𝐾 eff) ⟩2 ⟩
= 

1 |Ω|2 ∫ 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′⟨𝛿 log 𝑘 ( 𝐫) 𝛿 log 𝑘 ( 𝐫 ′) ⟩ + …
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his equation, up to this order of approximation, is equivalent to
q. (C.4) , by replacing every occurrence of a conductivity by the corre-
ponding logarithm, so: 

 log 𝐾 eff ( 𝐿 ) = 

1 |Ω|2 ∫Ω 𝑑 𝐷 𝐫 𝑑 𝐷 𝐫 ′𝐶 log 𝑘 ( 𝐫 − 𝐫 ′) . (C.7)

he resulting formula is similar to Eq. (C.4) , replacing the covariance
unction by the log conductivity covariance function. For the special
ase of lognormal media, this is a quite natural transformation. The same
an be done with the simplified formula (C.5) . 

2. Gaussian covariance case 

In the isotropic Gaussian case, the covariance function is given by 

 𝑘 ( 𝐫) = 𝐶 𝑘 ( 𝑟 = 0) 𝑒 
− 𝑟 

2 

2 𝐼 2 𝑐 

he integral factorizes, and after changing variables x → x / I c , we ob-
ain: 

 𝐾 eff( 𝐿 ) = 𝐶 𝑘 ( 𝑟 = 0) 
( 

𝐼 𝑐 

𝐿 

) 2 𝐷 
[ 
∫

𝐿 ∕2 𝐼 𝑐 

− 𝐿 ∕2 𝐼 𝑐 ∫
𝐿 ∕2 𝐼 𝑐 

− 𝐿 ∕2 𝐼 𝑐 
𝑑 𝑥 𝑑 𝑦 𝑒 

− ( 𝑥 − 𝑦 ) 
2 

2 

] 𝐷 

= 𝐶 𝑘 ( 𝑟 = 0) 
( 

𝐼 𝑐 

𝐿 

) 2 𝐷 
{ √ 

𝜋

2 ∫
𝐿 ∕2 𝐼 𝑐 

− 𝐿 ∕2 𝐼 𝑐 
𝑑𝑦 

[ 
erf 

( 

𝐿 ∕ 𝐼 𝑐 − 2 𝑦 

2 
√
2 

) 

+ erf 

( 

𝐿 ∕ 𝐼𝑐 + 2 𝑦 

2 
√
2 

) ] } 𝐷 

= 𝐶 𝑘 ( 𝑟 = 0) 
( 

𝐼 𝑐 

𝐿 

) 2 𝐷 
[ √

2 𝜋 𝐿 
𝐼 𝑐 

erf 
( √

2 𝐿 
𝐼 𝑐 

) 

+ 2 𝑒 
− 𝐿 

2 

2 𝐼 2 𝑐 − 2 

] 𝐷 
(C.8)

Considering small upscaling volume, L small compared with I c , we
btain 𝐶 𝐾 eff( 𝐿 ) = 𝐶 𝑘 ( 𝑟 = 0) as it should. In the opposite case, considering

arge upscaling volumes L provides 

 𝐾 eff( 𝐿 ) ≃ 𝐶 𝑘 ( 𝑟 = 0) 
( √

2 𝜋
𝐼 𝑐 

𝐿 

) 𝐷 

his is a form of a central limit theorem for effective conductivity, quan-
ifying the variance reduction leading to convergence of the effective
onductivity for large averaging volume. 

Finally, using the simplified expression (C.5) , one gets after integra-
ion: 

 𝐾 eff
( 𝐿 ) ≃ 𝐶 𝑘 ( 𝑟 = 0) 

[ √
2 𝜋
𝐼 𝑐 

𝐿 
erf 
( 

2 
√
2 𝐿 
𝐼 𝑐 

) ] 𝐷 
(C.9)

t shares the same asymptotic behavior for extreme L than the exact (13) .
he same calculations can be carried out for 𝐶 log 𝐾 eff ( 𝐿 ) and give the

ame results using 𝐶 log 𝑘 ( 𝑟 = 0)) and the same spatial dependance. 

ppendix D. Second order evaluation of the average of block K diss 

The block equivalent conductivity K diss ( ϑ) is given by Eq. (15) . De-
omposing the conductivity as 𝑘 ( 𝐫) = ⟨𝑘 ⟩ + 𝛿𝑘 ( 𝐫) , one can carry-out a
econd order expansion of K diss ( ϑ): 

 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 

∫
𝜗 
𝑑 𝐷 𝐫( ⟨𝑘 ⟩ + 𝛿𝑘 )(∇( 𝑝 0 + 𝛿𝑝 ) 2 

𝜆𝐷 ∇( 𝑝 0 + 𝛿𝑝 ) 
2 . 

his formula must be expanded up to second order in a series expansion
f 𝛿k . Note that the technique that was presented in Appendix B cannot
e followed directly because the variational formulation is efficient at
he scale of the whole Ω only, not on every subvolume ϑ. In order to
implify notations, we introduce 𝛿p ( r ) as the first order variation due to
 variation 𝛿k ( r ). The numerator can be expanded up to second order,
iscarding third order terms to yield: 

∫ 𝑑 𝐷 𝐫 ( ⟨𝑘 ⟩ + 𝛿𝑘 ) 
(
∇( 𝑝 0 + 𝛿𝑝 ) 

)2 ≃ ∫ 𝑑 𝐷 𝐫 ( ⟨𝑘 ⟩ + 𝛿𝑘 ) (1 + 2∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 ) 

𝜗 𝜗 
+ ∫𝜗 𝑑 
𝐷 𝐫⟨𝑘 ⟩( ∇ 𝛿𝑝 ) 2 . (D.1) 

An analogous calculation can be carried out for the denominator,
ecalling that ∇ 𝑝 0 ( 𝐫 ′) = 𝐞 𝐱 : 

𝐷 ∇( 𝑝 0 + 𝛿𝑝 ) 
2 
= 𝜆𝐷 

(
∇( 𝑝 0 ) 

2 
+ 2 ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 + ∇ 𝛿𝑝 

2 )
= 𝜆𝐷 

(
1 + 2 ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 + ∇ 𝛿𝑝 

2 )
(D.2) 

ombining Eq. (D.1) and the second order expansion of Eq. (D.2) , many
ancellations occur, yielding still at same order of approximation: 

 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 𝑘 + 

1 
𝜆𝐷 

[ 
2 ∫𝜗 𝑑 

𝐷 𝐫 𝛿𝑘 
(
∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 − ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 

)
+ ⟨𝑘 ⟩∫𝜗 𝑑 𝐷 𝐫 ((∇ 𝛿𝑝 ) 2 − ∇ 𝛿𝑝 

2 
) 
] 

ne has in the general case ∇ 𝑝 0 = ∇ 𝑝 0 = 𝐞 𝑥 . It can be observed that in
he case of small averaging volume ϑ, 𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 𝑘 ( 𝐫) as it should: all the
ontributions cancel each other, because in that limit a volume average
s equal to the local value: ∇ 𝛿𝑝 = ∇ 𝛿𝑝 . Further simplifications can be
btained using Green’s formula on the term ⟨k ⟩∫ ϑd D r ( ∇ 𝛿p ) 2 combined
ith Eq. (A.1) that drives 𝛿p , yielding: 

 𝑑𝑖𝑠𝑠 ( 𝜗 ) = 𝑘 + 

1 
𝜆𝐷 ∫𝜗 𝑑 

𝐷 𝐫 𝛿𝑘 ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 

− 

1 
𝜆𝐷 

( 

2 ∫𝜗 𝑑 
𝐷 𝐫 𝛿𝑘 ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 + ∫𝜗 𝑑 

𝐷 𝐫⟨𝑘 ⟩∇ 𝛿𝑝 
2 
) 

+ 

⟨𝑘 ⟩
𝜆𝐷 ∫𝜕𝜗 𝑑 

𝐷−1 𝐫 𝛿𝑝 ∇ 𝛿𝑝 ⋅ 𝐧 + 

1 
𝜆𝐷 ∫𝜕𝜗 𝑑 

𝐷−1 𝐫 𝛿𝑘 𝛿𝑝 ∇ 𝑝 0 ⋅ 𝐧 . 

(D.3) 

e obtain after statistical averaging: 

𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩ = ⟨𝑘 ⟩− 

1 
𝜆𝐷 ∫𝜗 𝑑 

𝐷 𝐫 ∫Ω
𝑑 𝐷 𝐫 ′ ∇ 𝑝 0 ( 𝐫 ) . ∇ 

𝛿𝑝 ( 𝐫 ) 
𝛿𝑘 ( 𝐫 ′) 

𝐶( 𝐫 ′ − 𝐫 ) 

− 

1 
𝜆𝐷 ∫𝜗 𝑑 

𝐷 𝐫 
(
2 ⟨𝛿𝑘 ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 ⟩ + ⟨𝑘 ⟩⟨∇ 𝛿𝑝 

2 ⟩)
+ 

⟨𝑘 ⟩
𝜆𝐷 ∫𝜕𝜗 𝑑 

𝐷−1 𝐫⟨𝛿𝑝 ∇ 𝛿𝑝 ⋅ 𝐧 ⟩ + 

1 
𝜆𝐷 ∫𝜕𝜗 𝑑 

𝐷−1 𝐫⟨𝛿𝑘 𝛿𝑝 ⟩∇ 𝑝 0 ⋅ 𝐧 . 

sing 

𝛿𝑝 ( 𝐫) 
𝛿𝑘 ( 𝐫 ′) 

= 

1 ⟨𝑘 ⟩∇ ⋅ [ 𝐺( 𝐫 , 𝐫 ′)∇ 𝑝 0 ( 𝐫 ′)] , 

nd combining this result with Eq. (D.2) , one obtains: 

𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩ = ⟨𝑘 ⟩− 

1 ⟨𝑘 ⟩𝑙 𝐷 ∫𝜗 𝑑 𝐷 𝐫 ∫Ω
𝑑 𝐷 𝐫 ′𝜕 𝑟 𝑥 𝜕 𝑟 ′𝑥 𝐺( 𝐫 , 𝐫 

′) 𝐶 𝑘 ( 𝐫 ′ − 𝐫 ) 

− 

1 
𝜆𝐷 ∫𝜗 𝑑 

𝐷 𝐫( ⟨2 𝛿𝑘 ∇ 𝑝 0 ⋅ ∇ 𝛿𝑝 ⟩ + ⟨𝑘 ⟩⟨∇ 𝛿𝑝 
2 
) ⟩

+ 

⟨𝑘 ⟩
𝜆𝐷 ∫𝜕𝜗 𝑑 

𝐷−1 𝐫⟨𝛿𝑝 ∇ 𝛿𝑝 ⋅ 𝐧 ⟩ + 

1 
𝜆𝐷 ∫𝜕𝜗 𝑑 

𝐷−1 𝐫⟨𝛿𝑘 𝛿𝑝 ⟩∇ 𝑝 0 ⋅ 𝐧 . 

(D.4) 

t can be checked by direct inspection that first line of this formula com-
ares well with Eq. (B.3) . The other contributions are finite size effects
hat cancel if 𝜗 = Ω. They explain the observed differences in the nu-
erical tests. If ϑ tends to zero, ⟨𝐾 𝑑𝑖𝑠𝑠 ( 𝜗 ) ⟩ = ⟨𝑘 ⟩. 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.advwatres.2020.103594 . 
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