Album of Porous Media

Ezequiel F. Médici · Alejandro D. Otero Editors

Album of Porous Media

Structure and Dynamics English and Spanish Edition

FLOW IN BINARY POROUS MEDIA: VISCOUS DISSIPATION

Iván Colecchio¹, Alejandro Boschan¹, Benoît Noetinger², and Alejandro Otero³

¹ Facultad de Ingeniería, Universidad de Buenos Aires

² IFP Energies Nouvelles

³ Centro de Simulacion Computacional, CSC - CONICET

(a, d) $k_{high} : \blacksquare$, $k_{low} : \blacksquare \leftarrow$ Binary Media \rightarrow (c, f) $k_{high} : \square$, $k_{low} : \blacksquare$

Flow and transport in porous media strongly depend on the connectivity of the high permeability component. Frequently, small critical regions determine the overall flow behavior. Energy dissipation approaches make it possible to detect these regions, yielding more accurate effective properties[1].

We've simulated flow in a synthetic binary medium (b) with a high conductivity ($k_{high} = 100m/day$) and a low one ($k_{low} = 0.01m/day$). No-flow boundary conditions are applied in the vertical boundaries while a pressure gradient exists between the inlet (bottom) and the outlet (top). The resulting energy dissipations maps are shown in (a) (with k_{high} : \blacksquare , $k_{low} : \square$), and in (c) (with k_{high} : \square , $k_{low} : \blacksquare$). Zooms over a small critical region are shown in the bottom row (d, e, f).

When k_{high} paths connect inlet and outlet (i.e. when percolation of the k_{high} component occurs) energy dissipation is distributed mostly along flow channels (a, d). Otherwise, channelization is absent and energy dissipation is distributed along barriers (c, f).

1. Colecchio I. et al. (2020). Advances in Water Resources, 140:103594.

El flujo y el transporte en medios porosos depende en gran parte de la conectividad del componente de alta permeabilidad. Con frecuencia, pequeñas regiones críticas determinan el comportamiento del flujo en general. Los enfoques de disipación de energía posibilitan detectar estas regiones, brindando propiedades efectivas más precisas[1].

Hemos simulado el flujo en un medio binario sintético (b) con alta conductividad ($k_{high} = 100/da$) y baja conductividad ($k_{low} = 0, 0$ lm/da). Se aplicaron condiciones de contorno de no flujo en los límites verticales mientras se aplica un gradiente de presión entre la entrada (parte inferior) y la salida (parte superior). Los mapas de disipación de energía resultantes se muestran en (a) (con k_{high} : \blacksquare , k_{low} : \Box), y en (c) (con k_{high} : \Box , k_{low} : \blacksquare). La fila inferior (d, e, f) son ampliaciones de una región crítica pequeña.

Cuando los caminos k_{high} conectan la entrada y la salida (por ejemplo cuando ocurre percolación en el componente k_{high}) la disipación de energía se distribuye principalmente a lo largo de canales de flujo (a, d). En el caso contrario, no ocurre canalización y la disipación de energía se distribuye a lo largo de barreras (c, f).

Contact: Iván Colecchio <icolecchio@fi.uba.ar>