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[1] The miscible displacement of a Newtonian or shear-thinning fluid by another one of
same rheological properties has been studied optically in a flat transparent model fracture
with a random distribution of identical cylindrical obstacles on one of the walls. At the
local scale, the concentration variation on individual pixels satisfies a Gaussian
convection-dispersion relation with local transit time �t(x, y) and dispersivity ld(x, y). The
variation of ld with the Péclet number Pe shows that it results from a combination of
geometrical and Taylor dispersion, respectively dominant at low and high Pe values.
Using shear-thinning solutions instead of a Newtonian fluid enhances the velocity
contrasts (and therefore geometrical dispersion) and reduces Taylor dispersion. At the
global scale, the front geometry is studied from the isoconcentration lines c = 0.5
(equivalent to lines of constant �t(x, y) value): beyond a transition travel time, their width in
the direction parallel to the flow reaches a constant limit varying linearly with Log(Pe)
with a slope increasing with the shear-thinning character of the fluid. These characteristics
are compared to previous observations on other model fractures with a self-affine
roughness displaying channelization effects.
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1. Introduction

[2] The transport of dissolved species in fractured for-
mations is an important issue in waste storage or water
management applications [NAS Committee on Fracture
Characterization and Fluid Flow, 1996; Neretnieks,
2002]. Obtaining reliable predictions of these processes
requires modeling the advection and the dispersion of
contaminants from a source inside or at the surface of the
fractured rocks [Adler and Thovert, 1999; Berkowitz, 2002].
Ultimately, these phenomena must be modeled at the scale
of the fracture network but understanding transport in a
single fracture is a crucial first step.
[3] Fractures have often been represented as the fluid

saturated space between two parallel plane surfaces
[Witherspoon et al., 1980]. This neglects the strong
influence of the variations of the aperture due to the
roughness of the walls, resulting in spatial heterogeneities
of the mean flow in the plane of the fracture [Tsang and
Tsang, 1987; Brown et al., 1998]. This roughness may
display very different geometrical features depending on the
origin of the fracture and of its subsequent history (flow,
physicochemical processes, etc.).

[4] A first case is surfaces with multiple characteristic
length scales observed in many fractured rocks [Bouchaud,
2003]. Several studies dealt for instance with fractures
bound by complementary self-affine surfaces with a relative
shear displacement [Gentier et al., 1997; Yeo et al., 1998;
Auradou et al., 2005]. In this case, the fracture aperture field
is structured into long preferential channels perpendicular to
the shear. Experimental studies of miscible fluid displace-
ments using dyed fluids have been reported in transparent
models with this geometry [Auradou et al., 2006; Boschan
et al., 2007]. The large scale structure of the displacement
front reflects the velocity contrasts between the preferential
channels and its width parallel to the flow increases linearly
with time. Global front spreading is then dominantly con-
vective and controlled by the large scale structures of the
velocity field rather than by its local disorder.
[5] The present experimental work uses a similar tech-

nique but applied to rough fractures of different geometry
featuring a short correlation length of the velocity fluctua-
tions and no large scale channels: these models have two
plane walls with a random distribution of cylindrical
obstacles of uniform size over one of them. This geometry
allowed us to study the interplay of the mechanical and
Taylor dispersion mechanisms which are both present in
these models and depend differently on the flow velocity.
[6] The second focus of this work is on the influence

of the fluid rheology. The two dispersion mechanisms
[Paterson et al., 1996; Auradou et al., 2006] are altered
in opposite directions when Newtonian fluids are replaced
by shear thinning solutions: while mean velocity contrasts
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between different flow paths (and therefore geometrical
dispersion) is enhanced for shear-thinning fluids, the veloc-
ity profiles in individual flow channels flatten out, reducing
therefore Taylor dispersion [Vartuli et al., 1995]. The results
obtained in the present work may be relevant to different
water management problems such as the spreading of
complex pollutants or decontamination processes using
fluids such as concentrated colloidal dispersions, emulsions
or foams [see, e.g., Bragato and El Seoud, 2003; Borden,
2007]. These may indeed display non-Newtonian rheolog-
ical characteristics influencing strongly their propagation
through porous and/or fractured media.
[7] In the following, the main dispersion mechanisms and

the experimental setup and procedure are first described:
using a dyed and a transparent fluid for the displacements
allows for optical measurements of their local relative
concentration and of its variation with time at a scale
smaller than the roughness size. Using these measurements,
the dispersion of the dye tracer is studied at the local and
global scales as a function of the Péclet number Pe and for
different Newtonian and polymer solutions. The relative
influence of the different dispersion mechanisms is then
analyzed and additional information is obtained from an
analysis of the local structure of the displacement front.

2. Dispersion Mechanisms in Fractures

[8] In homogeneous porous media inside which a flow of
mean velocity U has been established, the concentration
c(x,t) of a tracer (assumed to be constant in the directions
perpendicular to the orientation x of the velocity) often
satisfies the Fickian advection-dispersion equation:

@c

@t
þ U

@c

@x
¼ D

@2c

@x2
: ð1Þ

where D is the longitudinal dispersion coefficient which is
often replaced by the dispersivity ld = D/U. The same
equation may be expected to be valid in fractures,
particularly when no preferential channels are present (c is
then an average of the local concentration across the fracture
gap). Several numerical, theoretical and experimental
investigations suggest that the variation of the normalized
dispersivity with the Péclet number Pe should be of the
form [Ippolito et al., 1993, 1994; Roux et al., 1998; Adler
and Thovert, 1999; Detwiler et al., 2000]:

ld

a
¼ aG þ aTPe: ð2Þ

In this expression, Pe = Ua/Dm in which a is the mean
fracture aperture and Dm is the molecular diffusion. In this
equation, Pe is assumed to be larger than 1 so that pure
longitudinal molecular diffusion is negligible (a 1/Pe term
would otherwise have to be added).
[9] The aTPe term corresponds to Taylor dispersion: it

results from the spreading of the tracer (for instance dye) by
the velocity profile between the plates balanced by trans-
verse molecular diffusion across the gap [Taylor, 1953; Aris,
1956]. For a fracture with two flat parallel walls and for
Newtonian fluids, aG = 0 and aT = 1/210; the value of aT

should be lower for shear-thinning fluids due to the flatten-
ing of the velocity profile between the walls [Vartuli et al.,
1995; Boschan et al., 2003].

[10] The aG term is nonzero only for fracture with rough
walls and reflects the influence of geometrical dispersion. It
is due to spatial variations of the flow velocity in the plane
of the fracture. Its value has been predicted [Gelhar, 1993;
Roux et al., 1998] to scale as:

aG ¼ B
x�2

a
: ð3Þ

in which e = su/U characterizes the amplitude of the fluid
velocity fluctuations and x their correlation length in the
flow direction (su is the standard deviation of the fluid
velocity from its mean value U). In the previous equation,
the value of the constant B depends on the aperture
distribution; for a Gaussian aperture field, it is equal to
2=

ffiffiffi
p

p
. Such a diffusive spreading regime can only be

reached when the correlation length of the velocity field is
small enough compared to the size of the sample. This
condition will be satisfied for the models used in the present
work; this was not the case for the self-affine fractures used
by Boschan et al. [2007] in which preferential channels with
a length of the order of that of the fracture were present.
From equation (2), the relative influence of Taylor
dispersion may be expected to be larger at high Péclet
numbers with geometrical dispersion being dominant at low
flow velocities (although still with Pe > 1). Also, and in
contrast with Taylor dispersion, aG may be expected to be
larger for shear-thinning fluids due to the enhancement of
the spatial velocity variations inside the model fracture. A
similar increase, is observed in the self affine fractures
[Boschan et al., 2007], this time for the velocity contrasts
between slow and preferential channels.

3. Experimental Setup and Procedure

3.1 Model Fracture and Displacement Experiments

[11] The model fracture corresponds to the space between
two transparent surfaces. The upper one is a flat glass plate
and the lower one is a rough photopolymer plate lying
against a flat glass backing (see Figure 1). The wall
roughness is represented by randomly distributed cylindri-
cal obstacles protruding out of the plane surface. Their
layout has been generated by computer: there are 5400
obstacles of diameter do = 1.4 mm and height 0.35 mm,
covering 20% of the wall area. The minimum distance
between the centers of the obstacles is 2.1 mm (1.5 times
the diameter of the obstacle) and its mean is 3.6 mm. The
layout is first printed onto the photopolymer plate using an
UV light source and the obstacles are then revealed by
etching. Their height may be adjusted by varying the
duration of the exposure to the UV light.
[12] The two fracture walls are kept apart by mylar

spacers with a size: 350 mm � 20 mm. These are located
on the two longer parallel sides of the model and also act as
seals. The size of the remaining useful area of the fracture
is: 350 � 120 mm. The mean aperture a of the fracture is
defined as the ratio of the volume accessible to the fluid in
the fracture and of the corresponding area of the wall. This
fluid volume is measured independently by filling it using a
calibrated syringe pump, leading to a = 0.65 ± 0.02 mm.
Another estimation of a is also obtained from the velocity of
the displacement fronts during the experiments: these fronts
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are straight and parallel to the y direction, implying that
there is no sizable gradient of the mean aperture across the
width of the model. The value of a is used to define the
Péclet number with:

Pe ¼ Ua

Dm

ð4Þ

in which U is the average velocity in the gap (equal to the
mean velocity of the front).
[13] The minimum aperture am of the model (i.e., the

distance between the top of the obstacles and the flat glass
plate) and its maximum aM are determined by measuring the
height of the obstacles and the thickness of the spacers with
a mechanical caliper. The corresponding values are respec-
tively: am = 0.37 ± 0.02 mm and aM = 0.72 ± 0.02 mm. The
lack of mechanical contact points in the model (i.e., the fact
that am > 0) allows for simpler interpretations due to the
narrower distribution of the transit times through the differ-
ent regions of the fracture. An independent value of a is
provided by the weighted average of am and aM using the
fraction of the area corresponding to each of these two
apertures; this value of a agrees within ±5% with the two
previous ones.
[14] The fracture assembly is horizontal with the two

longer sides sealed by the spacers while the shorter ones are
open to allow for fluid flow in and out of the fracture. The
inlet side is attached to a fluid reservoir with an open
surface; the outlet is connected to a syringe pump sucking
the solutions out of the fracture at a selectable constant flow
rate. The procedure for saturating the model and obtaining a
straight sharp initial displacement front is very similar to
that described in a previous paper for vertical models
[Boschan et al., 2007]. By repeating this procedure, sequen-
ces of ‘‘direct’’ experiments in which the dyed fluid
displaces the clear one and ‘‘inverse’’ experiments in which
the dyed fluid is displaced are realized. In order to avoid
pollution by outside dust, the aperture of the reservoir is
kept covered during the experiments.
[15] For each solution selected, both direct and inverse

displacement experiments have been realized at 7 different
constant flow rates ranging between 0.014 and 1.4 ml/min
(3 < Pe < 350). Depending on the flow rate, the duration
of the experiments required to obtain a complete satura-

tion of the fracture by the invading fluid ranges between
24 min and 42 h.

3.2. Fluid Preparation and Characterization

[16] The solutions used in the present work are either a
Newtonian water-glycerol mixture or shear-thinning water-
polymer (scleroglucan) solutions with a 500 or 1000 ppm
polymer concentration. In all cases, the injected and dis-
placed fluids have identical rheological properties. The
Newtonian solution contains 10% in weight of glycerol
and has a viscosity equal to 1.3 � 10�3 Pa�s at 20�.
[17] The preparation and characteristics of the shear-

thinning solutions are the same as reported by Boschan et
al. [2007]. The variation of the viscosity h with the shear
rate _g is well fitted by the Carreau function:

h ¼ 1

ð1þ ð _g
_g0
Þ2Þ

1�n
2

ðh0 � h1Þ þ h1: ð5Þ

[18] The values of the parameters of this equation for the
two solutions used here are listed in Table 1. At low shear
rates _g] _g0, the viscosity is constant like for a Newtonian
fluid with h ’ h0 (Newtonian plateau regime). At higher
shear rates _g^ _g0, the variation of the viscosity follows a
power law: h / _�ðn�1Þ. The viscosity h should reach a
limiting value h1 at still higher shear rates, much beyond
the experimental range; practically h1 is taken equal to
1 mPa�s, i.e., the viscosity of water (the solvent).
[19] For flow between parallel plates separated by a

distance a, the velocity profile in the gap can be
computed easily from the relation between _g and h [Bird
et al., 1987]. Compared to the well known parabolic
shape for Newtonian fluids, the velocity profile for a
shear-thinning solution is flatter in the low shear rate
region located halfway between the plates. The shear rate
has its maximum value _gw at the walls. At low flow
velocities, one has _gw � _g0 and the flow profile is the
same as for a Newtonian fluid with _gw ¼ 6U=a. At
higher velocities for which _gw  _g0 the shear thinning
characteristics become important and, for a given mean
velocity U, one has _gw > 6U/a [Gabbanelli et al., 2005].
Using the above expression of _gw, the values of the
Péclet numbers Pe* for which _gw ’ _g0 the regions
between the obstacles have been estimated and are
respectively of the order of 10 and 30 for the 1000
ppm and 500 ppm solutions.

3.3. Optical Relative Concentration Measurements

[20] The technique used for mapping the relative concen-
tration of the two fluids has been described in a previous
paper [Boschan et al., 2007]. The transparent fracture is
back illuminated by a light panel (Figure 1): about 100
images of the distribution of the light intensity I(x, y ,t)
transmitted through the fracture are recorded at constant
intervals during the fluid displacement using a Roper

Figure 1. Schematic view of the experimental setup and
fracture model.

Table 1. Rheological Parameters and Characteristic Péclet

Numbers for Scleroglucan Solutions Used in the Flow Experiments

Cpoly ppm n _g0 s�1 h0 mPa.s

500 0.38 ± 0.04 0.077 ± 0.018 410 ± 33
1000 0.26 ± 0.02 0.026 ± 0.004 4500 ± 340
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Coolsnap cf digital camera with a high, 12 bits, dynamic
range. Reference images with the fracture saturated with the
clear and dyed fluids (dye concentration c0) are also
recorded before the experiments and after the full saturation
by the displacing fluid. A calibration curve is obtained
independently through separate measurements using, in
the same fracture, different solutions with dye concentra-
tions ranging from 0.1 to 0.4 g/l. Maps of the local relative
dye concentration 0 � c(x, y, t)/c0 � 1 are then obtained
after normalizing the experimental images by the reference
ones and using the calibration curve (in the following, c0 is
omitted and c(x,y,t) refers directly to the normalized con-
centration dye concentration). The error on the determina-
tion of c is not constant, due to the nonlinear relation
between the transmitted light intensity and the dye concen-
tration [see Boschan et al., 2007]: the absolute uncertainty
increases from ±1.5% for c = 0.5 to ±5% for c = 1.

4. Qualitative Observations

[21] Figure 2 compares relative concentration maps ob-
served at two different flow rates for both the water glycerol
mixture and the 1000 ppm polymer solution (although the
flow rates are the same for the two fluids, the Péclet
numbers are different because of the difference between
the molecular diffusion coefficient). In all cases, the injected
volume of the displacing fluid is about half the total fracture
volume. In the center part of all four pictures, the variation
of the grey shades marks the mixing region where the
relative concentration of the colored fluid varies from 0 to
1. Its variation is not smooth and uniform and small scale
filament-like structures approximately parallel to the mean
flow are visible. These structures reflect velocity fluctua-
tions between different flow lines: These fluctuations create
concentration gradients in the direction transverse to the
flow which, in turn, are smoothed out by molecular diffu-
sion. The distance parallel to the flow over which these
filaments remain visible is thus largest at high flow rates for

which the transit time during which transverse diffusion
takes place is reduced while the transverse width of the
filaments remains the same. This explains why these fila-
ments are hardly visible for Pe = 6.6 while their length
represents a large fraction of that of the model for Pe = 345.
[22] A second important feature is demonstrated by

comparing the front structure observed with the water-
glycerol and water-polymer solutions. The former displays
fine filaments and the front is globally flat. For the shear-
thinning fluid, the filaments are coarser and longer and the
front displays large scale distortions representing a large
fraction of its total width. These distortions are visible at
both Péclet numbers while the features of the filaments are
mostly visible for Pe = 345.
[23] In the following parts of the paper, two key features

of the structure of the mixing zone are analyzed quantita-
tively for different flow velocities and rheological properties
of the fluids.
[24] . In section 5, the local spreading parallel to the

mean flow of the concentration variation front (measured on
single pixels) is first shown to be well described in all cases
by the classical convection-dispersion equation (1). The
variations of the corresponding local dispersivity ld = D/U
with Pe are then compared to the predictions of equation (2)
and the relative contributions of the geometrical and Taylor
mechanisms are discussed.
[25] . In section 6, the structure of the mixing zones and

its dependence on the transverse variations of the velocity
are characterized from a statistical analysis of the isocon-
centration front c = 0.5.

5. Local Spreading of the Mixing Zone

5.1. Quantitative Analysis of Local Concentration
Variations

[26] As noted above, the present experimental technique
measures variations both with time and distance of the
average c(x,y,t) of the local normalized dye concentration

Figure 2. Concentration maps (gray levels code) of a dyed fluid (light shade) displacing a clear one
(dark shade). (a–b) Water-glycerol mixture ((a) Pe = 8.6, (b) Pe = 450). (c–d) 1000 ppm polymer
solution. ((c) Pe = 6.6, (d) Pe = 345). Mean flow is horizontal on the figure and from left to right. The
field of view is 130 mm � 60 mm. The picture is centered in the width of the model and its left side is at a
distance of 120 mm from the inlet.
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over the aperture. A typical variation of c with time
measured experimentally at a fixed point (x, y) is displayed
in Figure 3: it is well fitted by the following solution of the
convection-dispersion equation (1):

c x; y; tð Þ ¼ 1

2
1þ erf

t � t x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
D x;yð Þ
U2 t

q
2
64

3
75: ð6Þ

In the reverse case (clear fluid displacing a dyed solution),
the (+) sign should be replaced by a (�) in front of the error
function. In equation (6), U is the mean velocity in the
whole model, �t(x, y) the mean transit time and D(x, y) is an
effective coefficient reflecting the cumulated dispersion
along the trajectories leading from the inlet side of the
model to point (x, y). Both �t(x, y) and D(x, y) depend on the
measurement point (x, y). This good fit of the local
concentration variation with solutions of the convection-
diffusion equation (1) is due to the moderate amplitude of
the velocity fluctuations in the model which, itself, results
from the relatively narrow distribution of the local apertures.
For a model with, for instance, contact points between the
wall surfaces (as is often the case in natural fractures), the
width of the velocity distribution will increase (due to low
velocity regions near the contact points) and the local
concentration variation will often not satisfy any more
equation (1).
[27] First, for each experiment, the variation with time of

the local relative concentration c(x, y, t) of the dyed fluid has
been analyzed for each pixel of the image and the
corresponding values of �t(x, y) and D(x, y) have been
determined. As will be shown below in section 6, the
isoconcentration front c = 0.5 at a given time t may be
determined from the spatial variations of �t(x, y) in order to
analyze the heterogeneities of the tracer distribution in the
mixing zone. The variations of D(x, y) characterize those of

the dispersion both across the model and with the distance x
from the injection line. The variations with x of the average
hD(x, y)iy of D(x, y) across the width of the model are
displayed in Figure 4: hD(x, y)iy becomes independent of x
after a transition distance of the order of 60 mm for the
water-polymer solution while it is shorter than 25 mm for
the Newtonian water-glycerol solution. The symmetry of
the dispersion process and the influence of buoyancy forces
due to residual density contrasts have been checked by
realizing the same experiments with the transparent solution
displacing the dyed one: this allowed us to invert the
buoyancy forces for a same distribution of the injected
and displaced fluids. We verified that the values of D for
a same distance x remain the same in both configurations.
[28] The constant asymptotic value of hD(x, y)iy, together

with the good fit displayed in Figure 3, suggests that the
Fickian dispersion model corresponding to equation (1)
describes well the local spreading of the front at all
locations throughout the experiment. This Fickian spreading
process is therefore characterized in the following by the
average D = hD(x, y)ix,y of the local dispersion coefficient
D(x, y).
[29] A similar type of analysis has also been carried out

on the average hc(x, y, t)iy of the concentration over the
width of the model. The variation of hc(x, y, t)iy with time
can also be well fitted by equation (6) which provides a
‘‘global’’ dispersion coefficient Dg. The variation of the
ratio Dg/D with the Péclet number Pe is displayed in the
inset of Figure 5: for the Newtonian water-glycerol solution
and the 500 ppm polymer solution, the ratio can be
considered as equal to 1 within experimental error. For
the 1000 ppm solution, the ratio is significantly larger than 1
at the highest Péclet numbers: this may indicate an increas-
ing effect of the inhomogeneities of the flow field which are
amplified for strongly shear thinning fluids like the
1000 ppm solution (as will be explained in the following
sections). It is however difficult to identify the different
factors determining the value of Dg. For this reason, in the

Figure 3. Time variation of the normalized dye concen-
tration c(x, y, t) on a single pixel (x, y) located in the center
part of the fracture width at a distance x = 110 mm from the
inlet (dyed 500 ppm polymer solution displacing the same,
clear, solution at Pe = 69). Solid line: fit of the data by
equation (6) with parameters: �t(x, y) = 1902 s and D/U2 =
6.91 s. The higher noise level at long times when c(t) is
close to 1 reflects the larger absolute uncertainty on the
concentration discussed at the end of section 3.3.

Figure 4. Variation of the average hD(x, y)iy of the local
dispersion coefficient as a function of the distance x from
the injection line. Water-glycerol mixture (open square): top
graph, Pe = 450; bottom graph, Pe = 8.6. 1000 ppm
polymer solution (open triangle): top graph, Pe = 345;
bottom graph: Pe = 6.6. Error bars: standard deviation of the
distribution of the local values of D(x, y) over the width.
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following, we analyze separately the ‘‘local’’ dispersion
mechanisms and the large scale effects respectively from
the variations of the ‘‘local’’ coefficient D and from the
front geometry.
[30] In order to identify easily the relative influence of the

different dispersion mechanisms, it is more convenient to
replace the coefficient D by the dispersivity ld = D/U (U is
the mean flow velocity). In the next section, the variation of
ld is studied as a function of the different flow parameters
for the three different Newtonian and shear-thinning solu-
tions investigated in the present work.

5.2. Dispersivity Dependence on the Fluid Velocity
and Rheology

[31] The variation of the normalized dispersivity ld/a
is displayed in Figure 5 as a function of the Péclet number
Pe = aU/Dm (a ’ 0.65 mm is the mean fracture aperture).
For all three solutions, ld remains initially constant at low Pe
values and increases strongly at higher ones (and particularly
for Pe ^ 100). These experimental variations may be well
fitted by equation (2) (lines in Figure 5) and the values of the
parameters aG and aT corresponding to these fits are listed in
Table 2. The variation of ld with Pe is in agreement with the
discussion in section 2 assuming that ld results from the
combination of geometrical and Taylor dispersions: the former
is dominant at low Pe values and the latter at higher ones.
[32] From section 2, aG and aT should respectively

increase and decrease with the shear thinning character of
the fluid. At low Péclet numbers, ld/a is indeed significantly
lower for the water-glycerol solution than for the two
polymer-water ones as expected for geometrical dispersion;
it is also slightly larger for the 1000 ppm polymer solution
than for the 500 ppm one. At high Péclet numbers and as
expected for Taylor dispersion, ld decreases significantly as
the polymer concentration increases from 0 to 1000 ppm. As
a result, the experimental curves corresponding to the
different solutions cross each other for Pe ’ 70.

[33] In previous experiments with flat smooth walls
[Boschan et al., 2003], only Taylor dispersion was observed
with a magnitude in agreement with theoretical expectations
both for Newtonian and shear thinning fluids.

5.3. Geometrical Dispersion Component for
Newtonian Fluids

[34] In order to compare the above experimental values of
the dimensionless coefficient aG to the predictions of
equation (3) discussed in section 2 [see Roux et al.,
1998], both e and x must be estimated. Experimentally,
the determination of such quantities would require first a
full determination of the 3D velocity field in the fracture
aperture: this is not an easy task, particularly near the walls
where the velocity gradients are large and optical observa-
tions are difficult. Numerical simulations provide an alter-
native approach to estimate these quantities which provides
a theoretical dispersivity value to be compared to the
experimental measurements.
[35] The two-dimensional lattice BGK method has been

used to compute the velocity field (however, at present, it is
only usable in the Newtonian case). The Brinkman equation
was solved using this method for a permeability field
derived from the aperture map in the experiment. A detailed
description of the technique is given by Talon et al. [2002].
The Brinkman coefficient is chosen such that the typical
Brinkman length is of the order of the mean aperture. A
typical map of the magnitude of the longitudinal velocity
component is displayed in Figures 6a–6b together with a
view of the concentration front in a simulated displacement
experiment. Streaks of low and high velocity are observed
in Figure 6a with a length equal to a few times the spacing
between the obstacles while the concentration distribution
(Figure 6b) is very similar to that observed experimentally.
After the velocity field has been determined, its auto-
correlation function Rvv(~d) [Kitanidis, 1997] is computed
for lags~d both parallel and perpendicular to the flow.
[36] The result is displayed in Figure 7 and the longitu-

dinal auto-correlation function is well fitted by a Gaussian
variation: this fit corresponds to a relative amplitude e2 =
0.17 of the velocity fluctuations and to a longitudinal
normalized correlation length x/a = 2.65. This leads to a
theoretical estimation aG = 0.45 very similar to the exper-
imental value obtained for the Newtonian fluid. The param-
eter aG could also be estimated directly from the
simulations of Figure 6b: the values obtained vary with
the measurement time but remain equal to the theoretical
one within ±10%.

5.4. Geometrical Dispersion Component Dependence
on Rheology

[37] Experimentally, the dimensionless coefficient aG

characterizing the geometrical dispersion component

Figure 5. Variation of the experimental dispersivity ld as a
function of the Péclet number (&), water-glycerol solution;
(4), 1000 ppm; (6), 500 ppm polymer solutions. Solid,
dotted and dashed lines: fit of the respective data with
equation (2). Horizontal dash-dotted line: value of aG

estimated by numerical simulation for the Newtonian
solution. Inset: variation of the ratio Dg/D of the global
and local dispersion coefficients as a function of the Péclet
number. The symbols are the same as in the main graph.

Table 2. Values of the Parameters aG and aT in (Standard Errors

daG and daT) Used to Fit the Experimental Variations of ld With Pe

for Water Glycerol (WG), and 500 ppm (500) and 1000 ppm (1000)

Polymer Solutions

Fluids aG daG aT daT aG/aT

WG 0.47 0.04 51.10�4 2.10�4 92
500 0.67 0.05 38.10�4 4.10�4 177
1000 0.71 0.03 17.10�4 2.10�4 417
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increases with the polymer concentration (see Table 2). In
the model of Roux et al. [Roux et al., 1998], aG is related to
the correlation length x and to the fluctuations amplitude e
of the velocity by equation (3).
[38] It has been shown [Boschan et al., 2007] that, for

shear-thinning fluids with a power law rheological charac-
teristic (h � _gn�1), the velocity fluctuation e = su/u should
increase by a factor (1 + n)/2n compared to the Newtonian
case. From equation (3), assuming that x retains the same
value for all three solutions, and using the values from
Table 1, aG might therefore be expected to increase by a
factor (n + 1)/n from the Newtonian case. The cor-
responding values for the 500 and 1000 ppm polymer
solutions are respectively 3.6 and 4.8. The experimental
values of aG do increase indeed significantly with the
polymer concentration but only by smaller respective fac-
tors 1.42 and 1.51.
[39] An explanation of this difference may be the fact that

the experimental values of aG are determined by a fit over
the full range of Pe values investigated. From equation (5),
depending on the value of the shear rate _g, the effective
viscosity h is constant (Newtonian regime for _g � _go) or
decrease with _g following a power law ( _g � _go). In section
3.2, the transition Péclet number Pe* between these two
regimes has been estimated for the faster channels between
the obstacles; the corresponding values are Pe* ’ 10 and
Pe* ’ 30 respectively for the 1000 ppm and 500 ppm
solution. For a variation of Pe from Pe� Pe* to Pe� Pe*,
aG should increase from the same value as for a Newtonian
fluid toward the higher one discussed above [Auradou et al.,
2008]. Since the above estimations of Pe* are within the
experimental range, the coefficients aG obtained from a fit
of the variation of ld/a over data points corresponding to all
Péclet numbers will therefore be intermediate between the

values for Newtonian and power law fluids as is indeed
observed.
[40] Other factors may influence the value of aG: first, in

slower flow regions above the obstacles, the transition
toward the power law rheological regime takes place at
higher Pe values (based on the mean flow velocity) than in
the faster channels between the obstacles. Also, in rough
model fractures Boschan et al. [2007], the influence of
small scale velocity gradients has been shown to be reduced
by momentum transfer transverse to the main flow for the
more concentrated polymer solution. This may also con-
tribute to reduce the value of aG.

5.5. Taylor Dispersion Component

[41] As noted above, the variations of the dispersivities ld
with the Péclet number measured for the three fluids cross
each other (see Figure 5); also, the value of ld for the
Newtonian solution is larger than those corresponding to the
polymer fluids at high Pe values. Still, for all three fluids,
the dispersivity variations are well adjusted by a linear
function showing that, in this range of Pe values, mixing
is largely controlled by Taylor dispersion.
[42] The corresponding dimensionless coefficient aT

depends significantly on the fluid rheology (see Table 2).
For a Newtonian fluid flowing between two parallel flat
plates [Aris, 1956], aT is equal 1/210 ’ 0.0047; this value is
close to that measured here for the Newtonian solution (see
Table 2).
[43] For shear-thinning fluids, the flattening of the veloc-

ity profile in the center of the fracture gap reduces Taylor
dispersion so that aT < 1/210. More precisely, in a parallel
plate geometry, the dispersion coefficient is related to the
velocity profile by the relation [Bird et al., 1987]:

D ¼ 2

aDm

Z a=2

0

dy

Z y

0

vx xð Þ � Uð Þ dx

 �2

ð7Þ

Figure 6. (a) Grey scale map of the longitudinal velocity
component (averaged over the local aperture) in a numerical
flow simulation using the same geometry as the experiments.
Black, zero velocity; white, velocity higher than twice the
mean velocity in the model. (b) Dye concentration map of a
simulated miscible displacement experiment. Flow is from
left to right and medium gray dots indicate the obstacles.

Figure 7. Autocorrelation function of the velocity compo-
nent parallel to the mean flow as a function of the amplitude
jdj of the lag for numerical simulations of the type displayed
in Figure 6. Solid line, lag ~d parallel to the mean flow
(dotted line,~d transverse to the flow). Dashed line, Gaussian
fit by function: R = e2exp(�j~dj2/x2) with e2 = 0.17 and x =
2.65 a.
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For power law fluids such that h / _gn�1, vx(y) can be
computed analytically and aT is found to satisfy the
following analytical relation [Boschan et al., 2003]

aT ¼ n2

6 2þ 5nð Þ 1þ 4nð Þ : ð8Þ

Using the exponents n listed in Table 1, leads to theoretical
predictions aT = 17 � 10�4 and aT = 24 � 10�4

respectively for the 1000 and 500 ppm polymer solutions:
the first value is similar to the corresponding experimental
one and the second is slightly lower (see Table 2). This
latter difference may reflect a transition between the
‘‘Newtonian plateau’’ and ‘‘power law’’ regimes due to
the larger value of _g0 for the 500 ppm solution.

6. Front Contours

[44] In the previous section, we have studied local dis-
persion from the concentration variation profiles along lines
of pixels parallel to the mean flow. These display a diffusive
spreading resulting from the combination of Taylor and
geometrical dispersion. These local dispersion processes
leave however aside variations of the concentration distri-
bution in the direction perpendicular to the mean flow. The
latter inhomogeneities are reflected, for instance, by the
filamentary structures displayed in Figure 2 and are due to
velocity contrasts between adjacent streamlines. These
effects are analyzed here from the dependence of the
geometry of the front contours on the time t and on the
fluid rheology: the contour is defined as the set of points of
coordinates (xf (y, t), y) for which the mean transit time
obtained from the fits of Figure 3 is equal to t (see Figure 8).
The contour xf (y, t) closely coincides here with the nor-
malized isoconcentration lines c(xf, y, t) = 0.5 (white dots in

Figure 8). Figure 9 compares contour geometries observed
for two different solutions and Péclet numbers at a distance
from the inlet close to half the total length. Qualitatively, the
global width of the front parallel to the flow increases
strongly with the Péclet number Pe and, also, is significantly
larger for the shear-thinning solution than for the New-
tonian one, particularly at the higher Pe’s. This latter
increase is due mainly to the growth of the largest
structures of the front: smaller features are, on the contrary,
less visible (particularly at high Pe) for the shear thinning
solution than for the Newtonian one. A qualitatively similar
behavior has been reported for channelized self-affine
fractures by Boschan et al. [2007]. Finally, the locations
of the geometrical features of the front contour at high and
low Péclet numbers are very strongly correlated for the
shear thinning solution; for the Newtonian solution, they
often occur at different distances across the front and the
correlation between these distances at different Péclet
numbers is less visible.
[45] Quantitatively, the width of the front is characterized

in the following by the standard deviation s(t) = h(xf (y, t) –
xf (t))

2iy0.5 of the coordinates xf (y, t) of the points of the
front; xf (t) is the average with respect to y of xf (y, t). The
variation of s(t) with xf (t) is displayed in Figure 10. At
short distances, s increases with xf for the two polymer
solutions while it reaches almost immediately a lower
limiting value s1 = 2.5 mm for the Newtonian one.
Moreover, the value of s1 is higher (7.5 mm) and reached
after a longer distance for the 1000 ppm concentration than
for the 500 ppm one (5 mm). All data points correspond to
the same flow velocity but the Péclet number is higher for
the water-glycerol than for the water-polymer solutions due
to its higher viscosity (and therefore lower molecular
diffusion coefficient).
[46] The standard deviation s also reaches a limit s1 at

long enough distances for all Pe values and for the three
fluids investigated (see inset of Figure 10 for the 500 ppm
solution). Finally, s1 increases significantly with the Péclet

Figure 8. Experimental relative concentration field for a
mean front displacement of half the fracture length
(500 ppm polymer solutions at Pe = 345). Mean flow is
horizontal and from left to right. Gray levels, values of the
normalized dye concentration c(x, y, t) (white, c = 0; black,
c = 1). Size of field of view: 54.5 mm � 75 mm. Solid line,
front contour xf (y, t) determined from mean transit time;
white dots, pixels for which c(x, y, t) = 0.50 ± 0.03. Large
dark gray dots, cylindrical obstacles (these are not perfectly
circular due to the limited resolution of the image).

Figure 9. Front geometries for a mean distance from the
inlet equal to half the fracture length. Top graph: Newtonian
water-glycerol solution. Solid line, Pe = 450; dashed line,
Pe = 8.6. Bottom graph, 1000 ppm polymer solution. Solid
line, Pe = 345; dashed line, Pe = 6.6.
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number, in agreement with the qualitative observations on
Figure 9.
[47] These latter features of the variation of s with

distance differ completely from previous observations on
channelized self-affine fractures Boschan et al. [2007] in
which s increases linearly with distance over the full length
of the model. This implies that transverse exchange is more
effective in the present case due to the smaller characteristic
distance of the velocity variations in the transverse direc-
tion. Also, the analysis of the geometry of the front
displayed in Figure 11 suggests that the characteristic
transverse size of the fingers is larger for the polymer
solutions (�5 mm) than for the Newtonian ones (�3 mm).
Assuming that this reflects a larger transverse correlation
length of the velocity would then explain why a longer path
length is required to reach the limit s1.
[48] Figure 11 displays the variation of the standard

deviation s1 in the stationary regime as a function of Pe
for the three solutions. A logarithmic horizontal scale is
used, showing that s1 varies roughly logarithmically with
Pe: in these coordinates, the slope of the variation is respec-
tively 3.7 times and 2.5 times higher for the 1000 ppm and
500 ppm polymer solutions than for the water-glycerol one.

7. Discussion and Conclusion

[49] The present work has demonstrated the characteristic
features of miscible displacement fronts and of the flow
distribution in single fractures with a random distribution of
cylindrical obstacles of uniform size. Using a transparent
model fracture and optical tracer concentration measure-
ments, we could measure dispersion at both the local and
global scales and to analyze in detail the geometry of the
displacement front and its variation with time. The disper-
sion characteristics differ strongly both from the case of
homogeneous 3D porous media and from the recent experi-

ments of Boschan et al. [2007] on model fractures with self
affine walls and a channelized aperture field.
[50] In both types of model fractures, the local dispersiv-

ity ld can be determined from the time variation of the
concentration c(x, y, t) on individual pixels which satisfies
the convection-diffusion equation (1). In the present case,
the variation of ld with the Péclet number reflects a
combination of geometrical and Taylor dispersion in agree-
ment with previous dispersion measurements [Ippolito et
al., 1994; Detwiler et al., 2000] on similar systems.
Geometrical dispersion is dominant at low Péclet numbers
(Pe ] 20) for which Taylor dispersion is small and ld is
nearly constant with Pe: this contribution of geometrical
dispersion increases with the shear-thinning character of the
fluids which amplifies spatial velocity fluctuations. Taylor
dispersion is dominant at high Péclet numbers (Pe ^ 100)
and is significantly reduced for shear-thinning fluids due to
the flattening of the velocity profiles (the estimation of this
variation agrees with the experimental observations for the
1000 ppm solution). As a consequence of the above
features, the variations of ld with Pe cross each other at
intermediate Péclet numbers (Figure 5).
[51] In the channelized self affine fractures studied by

Boschan et al. [2007], on the contrary, local dispersion
corresponds solely to the Taylor mechanism (and molecular
diffusion for Pe ] 1). This reflects the different values of
the correlation length x of the flow velocity field in the two
types of models. In the present work, both x and the relative
amplitude of the velocity fluctuations have been determined
in the Newtonian case by simulating numerically the flow
field using a lattice-Boltzmann method, leading to x/a ’ 2.5
(a is the mean aperture). Using equation (3), this provides a
theoretical value of the geometrical normalized dispersivity
component aG in good agreement with the experimental
dispersivity measurements at low Péclet numbers Pe ] 20
for which geometrical dispersion is dominant. In the chan-
nelized model used by Boschan et al. [2007], the correlation
length of the velocity field is much larger (of the order of

Figure 10. Variation of the front width s as a function of
the mean distance xf from the inlet for the water-glycerol
solution (square) (Pe = 90) and the 500 ppm (open circle)
and 1000 ppm (open triangle) polymer solutions (Pe = 69).
Inset, variation of s as a function of xf for the 500 ppm
polymer solution at Péclet numbers (from top to bottom):
Pe = 345 (solid circle), Pe = 172 (open circle), Pe = 69
(plus in open circle), Pe = 34 (dot in open circle), Pe = 17
(cross in open circle), Pe = 6.6 (cross).

Figure 11. Variation of the front width s1 (averaged other
all fronts corresponding to the stationary regime in each
experiment) as a function of Pe. The symbols for the
different solutions are the same as in Figure 10 (main
graph). Dashed lines correspond to fits with the following
variations: s1 = 1 + 0.8 Log(Pe) (water-glycerol); s1 =
0.6 + 2 Log (Pe) (500 ppm) and s1 = 0.6 + 3 Log (Pe)
(1000 ppm polymer solutions).
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the length of the sample) and a local mechanical dispersion
regime cannot get established.
[52] Comparisons with simple homogeneous 3D porous

media indicate another difference: in that case, Taylor
dispersion is not visible, even at high Péclet numbers and
geometrical dispersion is dominant as long as Pe ^ 1 [Bear,
1972]. This results from the multiply connected topology of
usual 3D porous media: it prevents Taylor dispersion due to
the flow profile in individual channels to appear since tracer
particles only remain generally close to a wall or in the
center of a flow channel for a short distance. In intermediate
geometries such as 2D networks of channels of random
aperture [Bruderer and Bernabé, 2001; D’Angelo et al.,
2007] which may be considered as a model of fractures with
a distribution of contact points, a variation of ld with the
Péclet number as Pe0.35 has been observed at medium and
high flow rates. This is intermediate between the exponents
corresponding to geometrical and Taylor dispersion and
results from the 2D nature of the network.
[53] At the global scale the front displays only small

elongated narrow structures. This contrasts with the self-
affine channelized fractures studied by Boschan et al.
[2007] for which large scale features of the front with a
width parallel to the flow increasing linearly with the
distance from the inlet are visible. In the present study the
width s of the front structures parallel to the flow reaches at
long distances a limit s1 varying logarithmically with Pe
and increasing for shear thinning fluids; practically, s is
determined from the geometry of lines of equal mean transit
time �t(x, y). Here, s ranges from 1 to 2 times the mean
spacing of the obstacles; further experiments with different
sizes and distributions would be needed to determine the
relation, if any, between s and the geometrical parameters
of the model fracture. These results imply that transverse
mixing is effective enough to allow for tracer exchange
between adjacent streamlines of different velocities and
limit the growth of the fingers. The slow increase of s1
with Pe suggests that mixing is less effective at high
velocities (perhaps because it involves transverse molecular
diffusion). On the contrary for channelized self-affine frac-
tures, characteristic distances are larger and do not allow for
transverse mixing: in this case spreading is convective and
s increases linearly with distance.
[54] Regarding the influence of the rheology, both s1 and

the distance needed to reach this limit are larger for shear
thinning solutions: this reflects likely an enhancement of the
velocity contrasts between the different front structures. For
similar reasons, for channelized self-affine fractures, the
global front width is also larger for shear thinning solutions.
[55] Overall, the results of this study and their compari-

son with experiments realized with self-affine fracture
models demonstrate the key influence of the geometry of
the wall roughness and of the distribution of its character-
istic length scales. In this respect, they provide guidelines
for future work on more natural systems as well as numer-
ical simulations. While Taylor dispersion is always present,
flow velocity variations may lead either to global convec-
tive front deformations for channelized flows as in self-
affine fractures or to diffusive geometrical spreading as
here. Understanding these mechanisms was made possible
by diagnostic techniques analyzing the concentration dis-
tributions in a broad range of lengths scales. Comparing

shear-thinning and Newtonian fluids may also represent a
very useful diagnostic tool to investigate transport in frac-
tured media since they influence in opposite ways geomet-
rical and Taylor dispersion.
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