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[1] The miscible displacement of a shear-thinning fluid by another fluid with the same
rheological properties is studied experimentally in a transparent fracture by an optical
technique that images relative concentration distributions. The fracture walls have
complementary self-affine geometries and are shifted laterally in the direction perpendicular
to the mean flow velocity U: The flow field is strongly channelized and macrodispersion
controls the front structure for Péclet numbers above a few units. The global front width
increases therefore linearly with time and reflects the velocity distribution between the
different channels. In contrast, at the local scale, front spreading is similar to Taylor
dispersion between plane-parallel surfaces. Both dispersionmechanisms depend strongly on
the fluid rheology, which shifts from Newtonian to shear thinning when the flow rate
increases. In the latter domain, increasing the concentration enhances the global front width
but reduces both Taylor dispersion (due to the flattening of the velocity profile in the gap of
the fracture) and the size of medium scale front structures.
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1. Introduction

[2] The transport of dissolved species in fractured for-
mations is of primary importance in a large number of
groundwater systems: predicting the migration rate and the
dispersion of contaminants from a source inside or at the
surface of a fractured rock is then relevant to many fields
such as waste storage and water management [NAS Com-
mittee on Fracture Characterization and Fluid Flow, 1996;
Adler and Thovert, 1999; Berkowitz, 2002].
[3] In the present work, these phenomena are studied

experimentally by analyzing relative concentration distri-
butions during the displacement of a transparent fluid by a
miscible dyed one inside a model transparent rough frac-
ture. A key characteristic of these fractures is the self-affine
geometry of their wall surfaces: it reproduces the multi-
scale geometrical characteristics of many faults and
‘‘fresh’’ fractures. For such surfaces, the variance Dh2 =
< (h(~r þ ~Dr) - h(~r))2> of the local height h(x, y) of the
surface with respect to a reference plane satisfies:

Dh

l
¼ Dr

l

� �z

; ð1Þ

in which (x, y) are coordinates in the plane of the fracture, z
is the self-affine exponent, l the topothesy (i.e., the length
scale at which the slope Dh/Dr is of the order of 1).
[4] In this work, the rough fracture walls have comple-

mentary geometries: they are separated by a small distance

normal to their mean plane and shifted laterally relative to
each other. This shear displacement induces local aperture
variations: experimental and numerical investigations dem-
onstrate that, in this case, preferential flow paths dominantly
perpendicular to the shear appear [Gentier et al., 1997; Yeo
et al., 1998; Auradou et al., 2005]. These paths strongly
influence fluid transport [Neretnieks et al., 1982; Tsang and
Tsang, 1987; Brown et al., 1998; Becker and Shapiro,
2000], particularly when the mean flow is, as here, parallel
to these channels.
[5] The objective of the present paper is to study the

influence of the structure of the aperture field on the
displacement front of a transparent fluid by a dyed
miscible one. For that purpose, the displacement process
is studied at different length scales in order to identify the
different front spreading mechanisms. Practically, the
displacement front is analyzed in regions of interest of
variable widths W perpendicular to the flow. If W is
smaller than the local fracture aperture, the front spread-
ing will be dispersive and controlled by local mecha-
nisms; for large W values of the order of transverse size
of the fracture (100 times the aperture) the front structure
is controlled, on the contrary, by preferential flow paths.
Additional information on these mechanisms will be
obtained from the influence of the flow velocity and of
the fluid rheology (for instance, velocity contrasts
between preferential flow paths and slower flow zones
may be varied by using shear thinning fluids of different
concentrations).

2. Dispersion and Front Spreading in Rough
Fractures

[6] Previous studies by Ippolito et al. [1993], Roux et al.
[1998], Adler and Thovert [1999], and Detwiler et al.
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[2000] described mixing in fractures by a Gaussian con-
vection-dispersion equation. They suggested that the dis-
persion coefficient is the sum of the contributions of
geometrical and Taylor dispersion. The latter results from
the local advection velocity gradient between the walls of
the fracture: its influence is balanced by molecular diffusion
across the gap. There results a macroscopic Fickian disper-
sion parallel to the flow [Taylor, 1953; Aris, 1956] charac-
terized by the coefficient:

D

Dm

¼ t þ f Pe2; ð2Þ

where Dm is the molecular diffusion coefficient, the Péclet
number Pe = Ua0/Dm represents the relative influence of the
velocity gradients and molecular diffusion, U the average
flow velocity in the whole fracture, a the gap thickness, t
the tortuosity of the void space reducing the rate of
longitudinal molecular diffusion [Bear, 1972; Drazer and
Koplik, 2002]; for flat parallel plates and a Newtonian fluid,
f = 1/210.
[7] Geometrical dispersion reflects the disorder of the

velocity field in the fracture plane and may be significant in
rough fractures. Theoretical investigations by [Roux et al.,
1998] suggest that this geometrical mechanism is important
at intermediate Pe values; at lower (higher) Péclet numbers,
molecular diffusion (Taylor dispersion) are dominant. Scal-
ing arguments allow in addition to estimate Péclet numbers
corresponding to the limits of these domains: they depend
on the mean, the variance and the correlation length of the
aperture field. Such predictions are supported by experi-
mental investigations on model fractures with a relatively
weak disorder of the aperture field [Ippolito et al., 1993,
1994; Adler and Thovert, 1999; Detwiler et al., 2000].
[8] In natural fractures, however, experimental [Neretnieks

et al., 1982; Brown et al., 1998; Becker and Shapiro, 2000]
and numerical [Drazer et al., 2004] studies indicate that mass
transport is strongly influenced by large scale preferential
flow channels parallel to the mean velocity. Anomalous
dispersion is then expected as in the analogous case of porous
media with strata of different permeabilities [Matheron and
de Marsily, 1980]. As pointed out by Roux et al. [1998],
similar effects are expected in fractures if the flow velocities
vary slower along a streamline than perpendicular to it. Then,
large distortions of the displacement front [Drazer et al.,
2004] may appear and grow linearly with time. Moreover, in
highly distorted parts of the front, transverse concentration
gradients appear and induce a transverse tracer flux that
further enhances dispersion.
[9] Another important parameter influencing miscible

displacements is the rheology of the flowing fluids (rele-
vant, for instance, to enhanced oil recovery using polymer
solutions [Bird et al., 1987]. Nonlinear rheological proper-
ties modify indeed the flow velocity field and, more
specifically, the flow velocity contrasts [Sahimi, 1993; Shah
and Yortsos, 1995; Fadili et al., 2002]. In the case of shear-
thinning fluids in simple geometries like tubes or parallel
plates, the flow profile is no longer parabolic but flattens in
the center part of the flow channels where the shear rate is
lowest: this decreases the dispersion coefficient (compared
to the Newtonian case) but the square law variation of the
dispersion coefficient with the Péclet number is still satis-

fied. For instance, when the viscosity m varies with the shear
rate _g following a power law: m / _gn�1, equation (2)
remains valid but f is a function of n [Vartuli et al., 1995].
[10] In heterogeneous media, on the contrary, numerical

investigations suggest that the flow of shear thinning fluids
gets concentrated in a smaller number of preferential flow
paths than for Newtonian ones [Shah and Yortsos, 1995;
Fadili et al., 2002]: the macrodispersion reflecting large-
scale distortions of the displacement front is then increased
(even though the local dispersion due to the flow profile in
individual channels is reduced). Finally, in this work and in
contrast with oil recovery, the polymer concentration in the
injected and displaced fluids is the same: we investigate
only its influence on the transport of a passive solute. The
influence of the shear thinning properties is studied by
running experiments with different polymer concentrations.

3. Experimental Setup and Procedure

3.1. Model Fractures and Fluid Injection Setup

[11] Model fractures used in the present work are made of
two complementary transparent rough self-affine surfaces
clamped together. A self-affine surface is first generated
numerically using the midpoint algorithm [Feder, 1988]
with a self-affine exponent z equal to the value 0.8
measured for many materials, including granite [Bouchaud,
2003]. Using a surface generated numerically avoids the
possible influence of unwanted macroscopic defects which
would distort the results if surface scans of natural samples
were used. Then, the surfaces are carved by a computer
controlled milling machine into a parallelepiped Plexiglas
block. The final steps of the machining require an hemi-
spherical tool with a 600 mm diameter. The effective size of
the surface is 171 by 85 mm and the difference in height
between the lowest and highest points of the surface is
19.2 mm while the mean square deviation of the height is
3 mm. The two surfaces are exactly complementary except
for a 0.33 mm relative shift parallel to their length; they are
bounded on their larger sides by 10 mm wide borders rising
slightly above the surfaces. The geometry of these borders
is chosen so that they match perfectly and act as spacers
leaving an average mean distance a0 = 0.75 mm between the
surfaces when the blocks are clamped together. The stan-
dard deviation of the aperture is s = 0.11 mm; the values of
its semivariance [Kitanidis, 1997] normalized by 2s2 are 0.6
(0.8) for distances equal to a0 and parallel and perpendic-
ular, respectively, to the length of the model. The difference
between these two last values reflects an anisotropy of the
aperture field. In all cases, the gap between the surfaces is
large enough so that the two walls do not touch: both the
mean aperture a0 and the relative displacement are the same
in all experiments. Avoiding mechanical contact points
allows to develop more complete and simpler interpretations
due to the narrower distribution of the transit times through
the different regions of the fracture. Such models describe
well artificial fractures created, for instance, during the
stimulation of oil wells and which are kept open thereafter
by proppant particles.
[12] The fracture assembly is positioned vertically

(Figure 1a) with the two vertical sides (corresponding to
the borders) sealed while the two others are open. The upper
side of the model is connected to a syringe pump sucking
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the fluids upward out of the fracture. The lower horizontal
side is dipped into a reservoir which may be moved up and
down. The fracture is first saturated by sucking fluid out of
the lower reservoir into the model. Then, the original fluid is
replaced by the other after lowering the reservoir before
raising it again and starting the displacement experiment by
pumping fluid at the top of the model. This procedure
avoids unwanted intrusions while replacing a fluid by the
other and allows to purge completely the lower reservoir; a
perfectly straight front between the injected and displaced
fluids is obtained in this way at the onset of the experiment
(Figure 1b).

3.2. Fluid Preparation and Characteristics

[13] In all experiments, the injected and displaced fluids
are identical water-scleroglucan solutions but for a small
amount of Water Blue dye [Horobin and Kiernan, 2002]
added to one of the solutions at a mass concentration c0 =
0.3 g/L. A similar amount of NaCl is added to the other
solution in order to keep both densities equal within ±1 �
10�4 (the density values are checked by an Anton-Paar
DMA35 oscillating tube densimeter). The dye has been
chosen such that it has no physicochemical interaction with
the model walls and can be considered as a passive tracer.
The molecular diffusion coefficient of the dye Dm ’ 6.5 �
10�10 m2 s�1 is determined independently from Taylor
dispersion measurements in a capillary tube.
[14] The rheological properties of the scleroglucan sol-

utions have been characterized using a Contraves LS30
Couette rheometer in range of shear rates 0.016 s�1 	 _g 	
87 s�1. The rheological properties of the solutions have
been verified to be constant with time within experimental
error (over a time lapse of 3 days) and to be identical for the

dyed and transparent solutions (for a same polymer con-
centrations). The variation of the viscosity h with _g is well
fitted by the classical Carreau formula:

h ¼ h0 � h1

1þ _g
_g0

� �2
� �1�n

2

þ h1: ð3Þ

The values of these rheological parameters for the polymer
solutions used in the present work are listed in Table 1. The
parameter h1 is taken equal to the value of the solvent
viscosity (10�3 Pa s for water) since its determination would
require measurements beyond the experimental range
limited to _g = 87 s�1. In equation (3), _g0 corresponds to a
crossover between two regimes. For _g < _g0, the viscosity h
tends to h0, and the fluid behaves as a Newtonian fluid. On
the other hand, for _g > _g0, h decreases following a power
law m / _g(n�1). Note that, due to the small volume fraction
of polymer, the molecular diffusion coefficient keeps the
same value as in pure water.

3.3. Optical Relative Concentration Measurements

[15] The flow rate is kept constant during each experiment
and ranges between 0.01 and 1 mL/min. The total duration of
the experiments in order to obtain a complete saturation of
the fracture by the invading fluid varies between 20 min and
33 hours. The transparent fracture is back illuminated by a
light panel: about 100 images of the distribution of light
transmitted through the fracture are recorded at constant
intervals during the fluid displacement using a Roper Cool-
snap HQ digital camera with a high, 12 bits, dynamic range.
Reference images are recorded both before the experiments
and after the full saturation by the displacing fluid in order to
have images corresponding to the fracture fully saturated
with both the transparent and the dyed fluid.
[16] The local relative concentration of the displacing

fluid (averaged over the fracture aperture) is determined
from these images by the following procedure. First, the
absorbance A(x, y, t) of light by the dye on an image
obtained at time t is computed by the relation:

A x; y; tð Þ ¼ ln
It x; yð Þ
I x; y; tð Þ

� �
ð4Þ

in which It (x, y) and I(x, y, t) are the transmitted light
intensities (in gray levels) measured for a pixel of
coordinates (x, y) respectively when the fracture is saturated
with transparent fluid and at time t. When the fracture is
saturated with the dyed fluid (c(x, y) = c0), the transmitted
light intensity is I0(x, y) and the adsorbance is:

A0 x; yð Þ ¼ ln
It x; yð Þ
I0 x; yð Þ

� �
ð5Þ

Figure 1. (a) Schematic side view of the experimental
setup. (b) Front close-up view of the setup as the front of
dyed fluid just penetrates into the model. The dark line
above the front and parallel to it is the rim of the walls of the
outside bath.

Table 1. Rheological Parameters of Scleroglucan Solutions Used

in the Flow Experiments

Polymer Concentration, ppm n _g0, s
�1 h0, mPa s

500 0.38 ± 0.04 0.077 ± 0.018 410 ± 33
1000 0.26 ± 0.02 0.026 ± 0.004 4490 ± 342
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The relation between the local concentration c(x, y, t)
(averaged over the local fracture aperture), the dye
concentration c0 in the dyed fluid and the absorbances A
and A0 has been determined independently from calibration
pictures realized with the fracture saturated with dyed
solutions of concentrations c increasing from 0.1 to 0.5 g/L.
The ratio A(x, y)/A0(x, y) is found experimentally to be
constant within ±3% over the picture area: for more
precision, the ratio < A >x,y/< A0 >x,y of the averages is
therefore used to determine the calibration curve. Because
of nonlinear adsorbance [Detwiler et al., 2000], the relation
c/c0 = < A >x,y/< A0 >x,y predicted by Beer-Lambert’s law is
not valid. In our experimental setup, the variation of c/c0
with < A >/< A0 > was found experimentally to follow
accurately the polynomial relation:

c

c0
¼ b1

A

A0

þ b2
A

A0

� �2

þ b3
A

A0

� �3

ð6Þ

with b1 = 0.186 ± 0.023, b2 = 0.0087 ± 0.04 and b3 = 0.108 ±
0.021. The resulting global absolute uncertainty on the
value of c/co (varying between 0 and 100%) is ±1.5%: this
uncertainty reflects the cumulated effects of the variability
of the local aperture of the fracture and of other sources of
error. Practically, equation (6) is applied to all pixels (x, y) in
the pictures recorded during the experiment in order to
obtain c(x, y, t)/c0. An instantaneous relative concentration
map obtained in this way is displayed in Figure 2. In the
following, c0 is omitted and c(x, y, t) refers to the local
relative concentration at a given time averaged over the
aperture.

4. Local Concentration Variations

[17] As already pointed above, transport in the fracture
results from the combination of front spreading due to large-
scale flow velocity variations and of mixing due to local
dispersion mechanisms and concentration gradients. In
order to identify these different processes, a local analysis
is first performed. For each pixel (x, y), the variation c(x, y, t)

with time of the local relative concentration of the dyed fluid
has been determined; as can be seen in Figure 3, it is well
fitted by the following solution of the convection-dispersion
equation corresponding to the stepwise concentration varia-
tions induced experimentally:

c x; yð Þ ¼ 1

2
1þ erf

t� t x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
D x; yð Þ
U2

t

r
0
BB@

1
CCA ð7Þ

In equation (7), U is the mean velocity, t x; yð Þ the mean
transit time and D(x, y) is an effective coefficient reflecting
the cumulated dispersion along the streamline leading from
the inlet side of the model to point (x, y) (all these quantities
reflect averages over the aperture of the fracture). Note that, if

Figure 2. Experimental relative concentration field obtained with a 1000 ppm polymer concentration for
a mean front displacement of half the fracture length. Gray levels represent values of the ratio c(x, y, t)/c0.
Size of field of view is 81 mm � 70 mm; only a part of the actual image is shown. Solid line shows front
profile xf(y, t) as defined in section 6.1; white dots are pixels where c(x, y, t)/c0 = 0.5 ± 0.03.

Figure 3. Time variation of the relative concentration
c(x, y, t) for x = 20 mm and y = 36 mm for 1000 ppm
polymer solutions. Mean flow velocity U = 0.014 mm/s
(Pe = 150). Circles are experimental data. Solid line is
the fit by equation (7) with t x; yð Þ = 1212 s and D(x, y) =
0.315 mm2/s.
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the injected fluid is the transparent one, the plus sign should
be replaced by a minus sign in equation (7). Both D(x, y) and
t x; yð Þ depend on the measurement point (x, y).
[18] In the following, the variations of these quantities are

analyzed: on the one hand, the spatial variations of t x; yð Þ
reveal the channelized structure of the flow that leads to
macrodispersion. On the other hand, we shall discuss now
D(x, y) which reflects local mixing processes taking place
on each streamline.

5. Dispersive Mixing Along Individual
Streamlines

[19] In this section, the variation of D(x, y) is studied as a
function of the distance x from the inlet and of the fluid
velocity and rheology. The probability distribution of the
values of D(x, y) for all pixels at a same distance x for a
given experiment is displayed in Figure 4a in a gray scale as
a function of x (45 	 x 	 125 mm). Figure 4b shows the
two extreme distributions corresponding to x = 45 (solid
line) and 125 mm: one observes that the mean value �D of
the distributions weakly increases between x = 45 and
125 mm. In the following, �D is referred to as D and the
deviations of the local values are characterized by the
width DD of P(D) at midheight which increases also slowly
with distance.
[20] The drift of D may be due to slow variations of the

mean aperture and flow velocity. It reflects also the larger
dispersion in distorted regions of the front observed in the
fracture plane: there, dye diffuses across parallel streamlines
of different velocities which contributes to broaden the
front. The slow variation of the mean value of D with x,
together with the good fit displayed in Figure 3, demon-

strate that the Fickian dispersion model describes well the
local spreading of the front throughout the experiment.
The symmetry of the process is finally checked by realizing
the same experiments with the transparent solution displac-
ing the dyed one. The distributions of the dispersion
coefficients for given values of x are the same as in the
reverse configuration: there is therefore no effect of small
residual density contrasts.
[21] The dependence of the local dispersion on the flow

velocity U for the 500 ppm and 1000 ppm solutions is
displayed in Figure 5 where D is plotted as a function of the
Péclet number Pe defined above. The same trends are
followed for both solutions: for low Pe values the dispersion
coefficient tends toward a constant close to 1 while, at high
Pe, D increases as the square of Pe. These variations are
similar to the predictions of equation (2) also plotted in
Figure 5 (solid, dotted, and dashed lines) for a Newtonian
fluid and two power law shear thinning fluids for which
m / _gn�1 (n is taken equal to the values listed in Table 1 and
the value of f in equation (2) is computed from equation (4)
of Boschan et al. [2003]). The overall agreement observed
implies that Taylor dispersion is indeed the dominant
mechanism controlling local dispersion.
[22] In a more detailed analysis, one must however take

into account the fact that, for real fluids, the viscosity does
not diverge at low shear rates but becomes constant (New-
tonian plateau viscosity) for _g < _g0. In a Poiseuille New-
tonian flow between two parallel flat plates, the shear rate is
maximum at the wall with _g = 6U/a. It follows that the
transition value _g0 is reached for U = Uc = a _g0/6. Using the
values of _g0 in Table 1, the velocities Uc (Péclet numbers
Pec) corresponding to the 500 ppm and 1000 ppm solutions
are 0.01 mm/s and 0.003 mm/s (Pec = 11 and 4). Below Pec,
the dispersion coefficient should be the same as for a
Newtonian fluid; above Pec, its variation should progres-
sively merge with that predicted for power law fluids. This
crossover is clearly observed in Figure 5: for Pe < 30, the
values of D obtained with the 500 ppm and 1000 ppm

Figure 4. Probability distribution P(D, x) of the dispersion
coefficient for a dyed solution displacing a transparent one:
mean flow velocity U = 0.014 mm/s (Pe = 150, polymer
concentration 1000 ppm). Only data corresponding to
distances x � 45 mm for which a clear dispersion regime
is established and the concentration variations c(x, y, t) well
fitted by equation (7) are plotted. (a) Gray levels
corresponding to the value of the probability P(D) at the
corresponding values of D and x. (b) Distributions P(D) for
x = 45 (solid line) and 125 mm (dashed line).

Figure 5. Variation of normalized dispersion coefficient
D/Dm with Pe = Ua0/Dm. Inset shows variation of the
dispersivity ld = D/U. Solid, dotted, and dashed lines show,
respectively, predictions from equation (2) for n = 1
(Newtonian fluid), n = 0.38, and n = 0.26 (shear-thinning
solutions with 500 ppm and 1000 ppm polymer concentra-
tions, respectively).
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solutions are the same and are close to the predictions for
Newtonian fluids. At high Péclet numbers, data points
corresponding to the two solutions get separated and the
value of D corresponding to the 1000 ppm solution is lower
than that for the 500 ppm one. The difference is of the same
order of magnitude as the predictions for power law fluids
with the corresponding values of n.
[23] It is often convenient to replace the dispersion

coefficient D by the dispersivity ld = D/U to identify more
easily the influence of spatial heterogeneities of the flow
field. For Taylor like dispersion satisfying equation (2) and
for a Newtonian fluid, the dispersivity has a minimum equal
to ld = 2a/

ffiffiffiffiffiffiffiffi
210

p

 0.14a for Pe =

ffiffiffiffiffiffiffiffi
210

p
’ 14.5. The inset

of Figure 5 displays the variation of the dispersivity with
Pe: its minimum value corresponds well to the theoretical
prediction for Newtonian fluids (solid line). This confirms
that, in this range of Péclet numbers, the two polymer
solutions behave like Newtonian fluids.
[24] These results demonstrate that the dispersion D(x, y)

along individual streamlines in the rough model fracture is
mainly due to the flow profile in the gap between the walls
and similar to that between flat parallel plates. This is likely
due to the specific properties of the flow field. First, as for
parallel plates, some streamlines located close to the upper
or lower wall will remain in their vicinity all along their
path through the sample: as in Taylor dispersion between
parallel planes, solute particles located initially upon such
streamlines may only move away from them through
molecular diffusion. A similar analysis may be made for
particles located initially halfway between the walls in high
velocity regions of the profile and which may reach the
walls only through molecular diffusion. Also, the orienta-
tion of the local flow velocity is always close to that of the
mean flow as will be seen below. In the next section, we
discuss on the contrary macrodispersion due to variations in
the plane of the fracture of the local velocities (averaged this
time over the gap).

6. Macrodispersion in the Model Fractures

6.1. Flow Structure and Mean Front Profile

[25] As pointed out above, the complementary rough
walls of the fracture model are translated relative to each

other in the direction y perpendicular to the mean flow
(along the x axis): in this configuration, large-scale channels
parallel to x appear [Gentier et al., 1997; Drazer et al.,
2004; Auradou et al., 2005] with only weak variations of
the flow velocity along their length [Auradou et al., 2006].
In the following, we use a simple model in which the
fracture is described as a set of independent parallel chan-
nels where the effective flow velocity U(y) depends only on
the transverse coordinate.
[26] The validity of this assumption is tested in Figure 6

in which the values of the normalized transit time t x; yð ÞU/x
are represented as gray levels at all points (x, y) inside the
field of view; t x; yð Þ is the local effective transit time
determined by fitting the curve of Figure 3 corresponding
to point (x, y) by solutions of equation (7). Dark (light)
pixels mark points where t x; yð ÞU/x is respectively higher
(lower) than 1: dark and light streaks globally parallel to x
are clearly visible and extend over the full length of the
model fractures. These streaks correspond to slow (fast)
flow paths and their orientation deviates only slightly from
x: this is in agreement with the above simple model of
parallel flow paths with different velocities remaining
correlated along the full path length.
[27] Another important feature of the maps of t x; yð Þ is

that they allow one to determine an instantaneous front
profile xf(y, t) at a given time t: in the following, it will be
defined as the set of all points for which t(x, y) = t. In our
experiments, this profile was very close to the set of points
for which c(x, y, t)/c0 = 0.5 (as can be seen in Figure 2): the
determination using the values of t x; yð Þ is however easier
and more robust and was used for this reason. In the
following, the macrodispersion process is directly charac-
terized by the variations of these front profiles with time
without analyzing extensively the concentration maps.
Using this procedure allows in addition to remove the effect
of Taylor dispersion on the global front spreading, making it
easier to determine the macrodispersion component.

6.2. Global Front Dynamics

[28] Figure 7 displays several front profiles obtained at
different times by this procedure. As expected, the profile is
initially quite flat but large structures appear and grow with
time. A key feature is the fact that similar structures are

Figure 6. Gray scale map of the normalized local transit time t x; yð ÞU/x. Flow is from left to right. Dark
(light) regions correspond to locations where t x; yð ÞU/x < 1 (t x; yð ÞU/x > 1). Mean flow velocity U =
0.014 mm/s (Pe = 150, polymer concentration 1000 ppm). The map covers the total area of the model
fracture (size 85 � 171 mm).
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observed on all fronts: it is only their size parallel to the
mean flow that increases with time. This confirms the large
correlation length parallel to x of the high- and low-velocity
regions and therefore the flow channelization already
assumed above.
[29] In such cases, as pointed out by Drazer et al. [2004],

the size of the structures of the front, and therefore its global
width s(t) should increase linearly with distance (and time).
In the following, the width s(t) is defined by s2(t) =
< (xf (y, t) � < xf (y, t) >y)

2 >y in which < xf (y, t) >y is the
mean distance of the front from the inlet at time t: as shown
in the inset of Figure 8, s(t) increases as expected linearly
with time. Since the mean distance < xf (y, t) >y also
increases linearly with time, the ratio s(t)/< xf (y,t) >y
remains constant and may therefore be used to characterize
the magnitude of the macrodispersion. In the framework of
the simple model assuming parallel independent channels
with different flow velocities, s(t) and < xf (y, t) >y are
respectively of the order of dU t and U t where dU is the
root mean square of the velocity variations between the
different channels. Therefore the ratio s(t)/< xf (y,t) >y
corresponds to dU/U of the velocity contrasts inside the
fracture (a well known result for stratified media with
negligible exchange between layers). In Figure 8, for both
Newtonian (h = cst.) and power law (h / _g n�1) fluids the
relative velocity fluctuations dU / U are expected to be
constant with U: s(t)/x tð Þ should therefore be independent of
the flow rate Q. Figure 8 displays the variation of s(t)/x tð Þ
with the normalized velocity U/Uc where Uc is the crossover
velocity between the Newtonian and the shear thinning
behaviors already defined in section 5. In Figure 8, the
values of s(t)/< xf (y,t) >y are averaged over several time
intervals and the bars indicate their fluctuations within these
intervals.
[30] For U < Uc, s(t)/x tð Þ retains a constant value close to

0.05 independent of the polymer concentration which likely
corresponds to a Newtonian behavior. For U < Uc, s(t)/x tð Þ
starts to increase above a same threshold value U/Uc ’ 2 for
both solutions and follows then a similar trend. In this
domain, the shear rate _g is always zero in the middle of the
gap of the fracture and highest at the walls. If the shear rate

at the wall is larger than the transition value _g0 (see
section 5), there are two domains in the velocity profile:
the fluid rheology is Newtonian in the central part of the
fracture and non-Newtonian near the walls [Gabbanelli et
al., 2005]. When the flow rate Q increases, the fraction of
the flow section where flow is Newtonian shrinks while the
fraction where it is non-Newtonian expands.
[31] In the very high velocity limit (U � Uc), almost all

the flow will become non-Newtonian and one may assume
that the fluid has a power law rheological characteristic
(m / _gn�1). Then, the average velocity in a given flow
channel, i.e., the integral of the velocity profile over the
fracture gap, varies faster with the longitudinal pressure
gradient rp and the gap a (as rp1/n a1+1/n) than for
Newtonian fluids (as rp a2). Assuming that all parallel
channels are subject to the same pressure gradient and that
the normalized standard deviation of their apertures is small
(s(a)/�a �1) leads to the estimation of the relative velocity
fluctuations dU/U 
 (1 + 1/n)s(a)/�a. This will also be the
order of magnitude of the relative front width s(t)/�a(t) at a
time t. This value should be related to the value sN(t)/�xN(t)
for a Newtonian fluid (n = 1) by:

s tð Þ=�x tð Þ
sN tð Þ=�xN tð Þ ¼

1þ n

2n
ð8Þ

At very high flow rates, one may therefore expect s(t)/x tð Þ
to reach a constant limiting value related to the value for a
Newtonian fluid by equation (8) and increasing with the
polymer concentration (when n decreases). Using for sN(t)/
�xN(t) the value 0.06 obtained in the low-velocity limit (solid
line in Figure 8) and for n the values from Table 1 leads to
s(t)/x tð Þ = 0.11 and s(t)/x tð Þ = 0.145 respectively for the
500 ppm and 1000 ppm solutions (dotted and dashed
horizontal lines). These limits are slightly higher than the

Figure 7. Front profiles xf (y, t) at times t = 6.5, 8, 9.5, 11,
and 12.5 min for a 1000 ppm polymer solution and U =
0.014 mm/s (Pe = 150). The mean flow velocity is oriented
from the bottom to the top.

Figure 8. Variation in log linear coordinates of the relative
front width s (t)/x tð Þ with the normalized mean velocity
U/Uc; crossover velocity Uc = 0.01 mm/s and 0.003 mm/s
for 500 ppm (squares) and 1000 ppm (circles) solutions.
Solid line shows the mean of the data in the low-velocity
limit. Dotted and dashed horizontal lines show predicted
values for power law fluids with same index n as the
500 ppm and 1000 ppm solutions, respectively. Inset shows
variation of s (t) (mm) with the distance x for a 1000 ppm
solution: diamonds, U = 0.0056 mm/s (Pe = 60); crosses:
U = 0.056 mm/s (Pe = 600); dashed line, linear regression.
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experimental values at the highest flow velocities. One can
therefore assume that the intermediate velocity domain
where s(t)/x tð Þ increases with U/Uc corresponds to a
transition between Newtonian and non-Newtonian flows.
[32] Let us finally point out that, since this macrodisper-

sion and the local Taylor dispersion described above have a
different dependence on distance and flow velocity, it is
difficult to compare their magnitudes. Overall, at large
distances, the influence of macrodispersion is generally
larger although Taylor dispersion remains always sizable.

6.3. Front Geometry

[33] In section 6.2 the overall front width has been shown
to depend on the global flow rate and on the fluid rheology;
their influence on the detailed front structure will now be
analyzed. Figure 9 compares front geometries observed for
the two solutions used in the experiments at the lowest
(highest) mean velocities investigated: U = 0.003 mm/s
(0.3 mm/s). The lower velocity is below Uc and the rheology
of both fluids is therefore Newtonian. The polymer concen-
tration plays then a minor part and the front geometries are
very similar (lower curves). In addition, at this mean
velocity, the Péclet number is 
3 and therefore lower than
the value Pe ’ 14.5 (see section 5) corresponding to the
crossover between Taylor dispersion and longitudinal mo-
lecular diffusion. As a result, transport at the local scale is
controlled by molecular diffusion which smears out the
effect of local velocity fluctuations and smooths the front
geometry.
[34] The higher velocity U = 0.3 mm/s (top curves) is

well above Uc: the global front width increases then with the
polymer concentration (see section 6.2), as can be seen for
the two top curves in Figure 9. However, at smaller length
scales, the geometrical characteristics of the front and their

dependence on the fluid rheology are more complex.
Geometrical features of lateral size below 10 mm have,
for instance, a larger extension parallel to the mean flow for
the 500 ppm solution.
[35] Previous theoretical, experimental and numerical

studies of displacement fronts between sheared complemen-
tary self-affine walls indicate that their geometry is also self-
affine (over a finite range of length scales) with the same
characteristic exponent z as the fracture walls [Roux et al.,
1998; Drazer et al., 2004; Auradou et al., 2001]. This
implies that the analysis of the front may, in turn, provide
useful information on the multiscale geometry of the frac-
ture walls and of the aperture field. Such self-affine profiles
y(x) may be characterized quantitatively from the maximum
variation ymax - ymin of y(x) in a window of width Dx (ymax

and ymin are the maximum and minimum values of y(x) in
this window.) In this ‘‘min-max’’ method, the average
Dy(Dx) of the values of ymax - ymin is computed for all
locations of the window inside the profile and the process is
repeated for the different values of Dx. For a self-affine
curve of characteristic roughness exponent z f, one has, for
instance, Dy / Dxz f (z f = 1 corresponds to a Euclidian
curve.)
[36] This result is verified in the inset of Figure 10 where

the ratio Dy/Dxz f is plotted as a function of Dx in log-log
coordinates for z f = 0.8: Dy/Dxz f is indeed observed to
remain constant over a broad range of variation of Dx. The
lower boundary of this self affine domain increases slightly
with the polymer concentration from 
3 mm (500 ppm) to

5 mm, (1000 ppm) and depends weakly on the flow
velocity (provided Pe ^ 14). For Dx below this crossover
length, the slope of the curves is close to 0.2, reflecting an
Euclidean geometry with Dy / Dx.
[37] In order to analyze the influence of the fluid prop-

erties and of the flow velocity U on these results, the
variation of the ratio Dy/Dx with Dx is displayed in
Figure 10 for the two polymer solutions and for two
different values of U (U < Uc and U > Uc). The maximum

Figure 9. Front geometries for a mean distance from the
inlet equal to half the fracture length. Solid (dashed) lines
show 1000 ppm (500 ppm) solutions. Top (bottom) lines
show U = 0.3 mm/s, i.e., Pe = 3000 (U = 0.003 mm/s, i.e.,
Pe = 30). The two sets of lines have been shifted to allow
for easier comparisons. Inset shows close-up of the top
curves (U = 0.3 mm/s, i.e., Pe = 3000).

Figure 10. Variation of the ratio Dy(Dx)/Dx as a function
of log10(Dx) for the same fronts as in Figure 9 with
1000 ppm (circles) and 500 ppm (squares) polymer
solutions. Symbols with solid lines show U = 0.03 mm/s
(Pe = 300), and symbols with dotted lines show U =
0.3 mm/s (Pe = 3000). Inset shows variation of log10 (Dy/
Dxz f ) as a function of log10 (Dx) with z f = 0.8.
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height difference Dy has been normalized by the window
width Dx to reduce the amplitude of the global variations of
Dy and make more visible the differences between the curves.
[38] For the lowest velocity U, the curves are similar for

both polymer concentrations (as expected for a Newtonian
rheology). For U > Uc (top curves in Figure 10), the ratio
Dy/Dx increases, reflecting a higher amplitude of the
geometrical features of the front at all length scales. In
addition to this global trend, the variation of Dy with Dx
depends however significantly on the polymer concentra-
tion. Features of the front with large transverse sizes Dx are
of larger amplitude Dy for the more concentrated solution;
on the contrary, smaller features corresponding to low Dx
values are more developed for the less concentrated solution
(this is qualitatively visible on Figure 9). The two curves
cross each other for Dx 
 4 mm. This attenuation of small-
scale features of the front for the more concentrated solution
may reflect an enhancement of the transverse diffusion of
the fluid momentum due to its higher viscosity (in other
words, drag forces between parallel layers of fluid moving
at different velocities become larger). This smooths out both
the local velocity gradients and the associated small features
of the front but does not influence large-scale velocity
variations.

7. Discussion and Conclusion

[39] Studying miscible displacement processes by an
optical method in a transparent model fracture has revealed
important characteristics of flow and transport in rough
fractures: these results may be applicable to fluid displace-
ments and transport in fractured reservoirs. A major feature
of this approach is the possible simultaneous analysis of
both local mixing and global front spreading due to large-
scale heterogeneities: the different transport mechanisms
may in particular be characterized by maps of the local
transit time from the inlet and of the local dispersion
coefficient.
[40] The multiple length scales features of natural frac-

tures have been reproduced by assuming rough walls of
complementary self-affine geometries and with a relative
displacement parallel to their mean plane, modeling the
effect of shear during fracturing. In the present experiments,
this relative displacement was perpendicular to the mean
flow: this induced a channelization of the flow field with
small velocity variations along the streamlines and larger
ones across them. Large macrodispersion effects are ob-
served in such a geometry: in the present experiments, the
front width increases linearly with distance from the inlet
and its structure reflects closely the velocity variations
between the different parallel channels. Taking into account
the very large correlation length of the velocity along the
channels and the low amount of transverse diffusive ex-
change; this convective front spreading regime may be
considered as valid all along the sample length and no
transition toward a diffusive regime is to be expected.
[41] In contrast, front spreading at the local scale remains

diffusive and the corresponding dispersion coefficient is
close to that estimated for Taylor dispersion in an Hele-
Shaw cell with plane walls separated by a distance equal to
the main aperture of the fracture. This value may however
be locally increased by transverse diffusion in highly dis-

torted regions of the fronts where the front gets locally
parallel to the mean flow.
[42] These fluid displacements are strongly influenced by

the rheology of the flowing fluids and, for the solutions used
in the present work, they depend on the polymer concen-
tration and/or the shear rate _g. More precisely, below a
transition value _g0, the polymer solutions used in the
present work behave like Newtonian fluids and their con-
centration has no effect at low mean velocities (U < Uc). At
higher shear rates (U > Uc), the shear thinning effects
become significant: they increase with the polymer concen-
tration but may be very different depending on the scale of
observation. The global width Dx of the front parallel to the
mean flow gets larger at higher polymer concentrations
while, in contrast, smaller geometrical features of the front
are reduced. In addition, for U > Uc, polymers also
influence Taylor dispersion at the local scale: in contrast
with macrodispersion, this dispersion component is reduced
by the flattening of the flow profile between the fracture
walls for shear thinning fluids. Using solutions of different
polymer concentrations may then allow one to separate
these two front spreading mechanisms which vary in oppo-
site directions when the polymer concentration changes.
Also, the enhancement of macrodispersion by the shear
thinning properties may allow to detect large-scale hetero-
geneities associated to weak permeability contrasts. These
effects may help understand better enhanced recovery pro-
cesses in which polymer solutions are injected to displace
oil or other fluids with a better efficiency.
[43] Such results raise a number of questions to be

answered in future work. First, one may expect the spatial
correlations of the velocity to decay with distance, leading
finally to normal Fickian dispersion. The present samples
were not long enough to allow for the observation of this
transition: it may however be more easily observable for
models designed so that flow is parallel to the relative shear
of the complementary fracture surfaces (in this case, the
correlation length should be smaller). Another important
issue is the influence of contact area on the transport pro-
cess: one may expect in this case the development of low-
velocity regions leading to anomalous dispersion curves.
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